Корзина сцепления: назначение и функции

Как продлить срок службы сцепления

Как правило, сцепление имеет ограниченный срок службы, который зачастую на МКПП не превышает 100 тыс. км. Что касается роботизированных коробок передач, сцепление может выйти из строя намного раньше (к 60-70 тыс. км.).

Обратите внимание, приведенные выше данные актуальны в случае щадящей эксплуатации автомобиля. Под такой эксплуатацией следует понимать отсутствие резких стартов, пробуксовок и высоких нагрузок на сцепление и трансмиссию, а также предполагается, что водитель (в случае с механикой) умеет пользоваться сцеплением правильно

Прежде всего, важно при остановке (например, на светофоре) переводить рычаг в нейтраль, а не удерживать выжатой педаль сцепления и педаль тормоза без выключения передачи

Игнорирование данного правила быстро выводит из строя выжимной подшипник

Прежде всего, важно при остановке (например, на светофоре) переводить рычаг в нейтраль, а не удерживать выжатой педаль сцепления и педаль тормоза без выключения передачи. Игнорирование данного правила быстро выводит из строя выжимной подшипник. При этом если выжимной заклинит, это приведет к повреждениям корзины и других элементов

При этом если выжимной заклинит, это приведет к повреждениям корзины и других элементов.

Еще частые пробуксовки, разгон с высоких оборотов приводит к тому, что активно изнашивается диск сцепления (сцепление подгорает). Что касается корзины сцепления, проблемы обычно связаны с лепестками. Обычно через определенное время их эластичность и прижимная сила меняется.

Результат- сцепление не может выключиться полностью. Это приводит к тому, что водителю сложно переключать передачи, скорости включаются туго, с усилием. Также общий износ корзины сцепления становится причиной повреждений  выжимного подшипника и диска сцепления.

В качестве итога добавим, что сцепление нужно отпускать плавно, не раскручивать двигатель до высоких оборотов во время старта с места, а также полностью отпускать педаль сцепления во время езды. Тягу также лучше дозировать  педалью газа, а не педалью сцепления, так как часто неопытные водители практикуют прием частичного выжима сцепления (в целях ограничения величины передаваемого крутящего момента на колеса).

Механизмы сцепления в «молодые годы» мирового машиностроения

Изобретение механизма сцепления приписывается Карлу Бенцу. Так это или не так, достоверно установить невозможно: производством и совершенствованием первых автомобилей в XIX веке одновременно занималось сразу несколько компаний, и все они шли по своему развитию, что называется, «ноздря в ноздрю».
Старейшим видом сцепления, широко распространённого на большинстве автомобилей конца XIX – начала XX века, было сцепление конического типа. Его фрикционные поверхности имели коническую форму. Такое сцепление передавало бо́льший крутящий момент, при тех же габаритах, по сравнению с нынешним однодисковым, было предельно простым по своему устройству и в уходе за ним.

Комфортабельный «Мерседес Бенц НР-50» – автомобиль с конической фрикционной муфтой.

Однако тяжёлый конический диск такого типа сцепления обладал большой инерцией, и при переключении передач после выжима педали ещё продолжал вращаться на холостом ходу, из-за чего включение передачи было затруднённой операцией. Для торможения диска сцепления применили специальный агрегат – тормоз сцепления, однако его использование было лишь половиной решения проблемы, как и замена одного конуса двумя менее массивными. В итоге, уже в 1920-х годах от такой тяжёлой и громоздкой (к кому же требующей значительных мускульных усилий в использовании) конструкции, как коническое сцепление, полностью отказались. Также существовало сцепление с обратным конусом, работавшее на разжимание.

Однако сам принцип данного механизма нашёл новое воплощение в конструкции современных коробок переключения передач с синхронизаторами. Синхронизаторы коробки передач, по сути, и представляют собою маленькие конические сцепления, которые работают за счёт трения бронзы (или другого металла с высоким коэффициентом трения) по стали.

Устройство автомобильного сцепления

За время, прошедшее со времен создания первого сцепления, конструкция этого элемента претерпела существенные изменения. Сегодня многие производители используют индивидуальные разработки, соответствующие особенностям двигателей и коробок передач, устанавливаемых на их автомобили. Однако основа конструкции сцеплений любых марок включает одинаковый набор компонентов:

  1. Маховик (1) – ведущий диск в механизме сцепления, размещается непосредственно на коленвале двигателя. В большинстве современных автомобилей используется двухмассовый тип маховика, который образован из 2 отдельных дисков, соединенных между собой пружинами. Одна половина маховика этого типа соединена с коленвалом, вторая – с ведомым диском. Пружинное соединение 2 половин обеспечивает сглаживание рывков, гашение вибраций, плавность передачи крутящего момента на КПП.
  2. Корзина сцепления (3) – в его конструкцию входят вогнутый корпус, из-за которого эта часть получила название «корзина», а также нажимной диск, соединенный с корпусом пружинным соединением. Благодаря системе прижимающих пружин нажимной диск соединяется с ведомым, благодаря чему и происходит передача крутящего момента.
  3. Диск сцепления (2) – устанавливается между нажимным диском и маховиком. Ступицей этот элемент соединен с первичным валом КПП. Конструкция этого диска сборная, он состоит из металлической основы, фрикционных накладок, а также пружин-демпферов, которые гасят удары и обеспечивают плавность передачи момента вращения.
  4. Нажимная муфта (4) в паре с выжимным подшипником – когда водитель выжимает сцепление, подшипник давит на диафрагменную пружину и сжимает ее. Благодаря наличию подшипника нажимная муфта не соприкасается с подвижными элементами сцепления и не изнашивается.

Также важным элементом сцепления является система привода: фрикционная, гидравлическая либо электромагнитная. 

Корзины сцепления — назначение, виды, устройство

Для чего нужна корзина сцепления?

Задача сцепления заключается в передаче крутящего момента от двигателя к трансмиссии, в разъединении трансмиссии от работающего двигателя на время, необходимое водителю для включения нужной передачи в коробке передач и обеспечении мягкого (без ударов и толчков) подключения трансмиссии обратно к двигателю. Дополнительная задача для сцепления – отсоединять трансмиссию от двигателя во время резкого торможения, во избежание остановки двигателя, а также компенсировать различные толчки и удары, чтобы не повредить механизм КПП.

Одной из деталей сцепления является, так называемая корзина сцепления. Корзина отвечает за взаимодействие диска с маховиком, то есть за включение сцепления и его отключение. Корзина сцепления представляет собой единый конструктивный узел. В состав входят: нажимной диск, диафрагменная пружина и кожух. Корзина сцепления взаимодействует с другими деталями сцепления. По наружному радиусу кожух корзины крепится болтами к маховику. Внутри корзины стоит возвратная пружина, которая взаимодействует с выжимным подшипником. Нажимной диск служит соединителем маховика и ведомого диска.

Когда сцепление выключено, нажимной диск давит на ведомый, который в свою очередь контактирует с маховиком. Сцепление включается тогда, когда нажимной диск прекращает своё давление, а ведомый диск начинает вращаться отдельно от маховика. Еще одним элементом корзины сцепления является диафрагменная пружина. Она обеспечивает нужное усилие для того, чтобы диск и маховик соединялись, и происходила передача крутящего момента. Пружина упирается в край кожуха и своим внешним видом напоминает лепестки. Внутри кожуха пружина закреплена с ним болтами и опорными кольцами. Выжимной подшипник обеспечивает давление на концы лепестков корзины сцепления снаружи. Вследствие этого пружина, находящаяся внутри корзины, перестаёт действовать на нажимной диск.

Когда наступает время менять корзину сцепления?

В целом сцепление является очень прочным узлом, который способен выдерживать значительные динамические нагрузки, компенсировать отсутствие достаточных навыков работы со сцеплением у неопытного водителя. Необходимость замены корзины сцепления возникает, как правило, только в случае потери пружинящих свойств или поломки диафрагменных пружин.

Долговечность сцепления изначально зависит от прочностных и нагрузочных характеристик, заложенных при конструировании, от качества компонентов, а самое главное – от навыков и стиля вождения владельца автомобиля. В нормальных условиях корзина сцепления может потребовать замены не ранее чем при пробеге 100 тыс. км. На износ или поломку корзины сцепления укажет неполное выключение сцепления, возникающее при нажатии на педаль сцепления.

Что такое сцепление

Сцепление – не что иное, как механизм, использующий для своего функционирования трение. За счет этого он передает энергию вращения от одного элемента трансмиссии машины к другому. По сути, узел является фрикционной муфтой.

Узел используют для отключения и подключения коробки передач к ДВС. Первое необходимо для торможения или постепенной остановки. Второе – для передачи энергии вращения на колеса и движения. Собственно говоря, это и есть его основное назначение.

Изобрел механизм немецкий инженер Карл Бенц, основатель концерна Даймлер-Бенц. Впервые он применил его на своем колесном автомобиле Motorwagen, который был сконструирован в 1886 году. Конструктивное решение показало хорошие результаты и стало использоваться на всех транспортных средствах, которые выходили в дальнейшем.

Виды фрикционных накладок

Органика – Фрикционный материал, который применяется на 95% всех типов используемых на сегодняшний день сцеплений. Органические накладки дешевы и неприхотливы. Именно по этим причинам они используются автомобильными производителями для авто ориентированных на комфортную повседневную эксплуатацию. Многие тюнинговые бренды сцеплений имеют в своей линейке усиленную органику, которая отличается от заводской более качественными составляющими фрикционного материала, термостойкость которого не превышает 250°С. Но усиленными данные сцепления можно назвать не столько из-за более качественного состава, а скорее из-за того, что в комплект входит корзина с повышенной прижимной силой.

FiberTuff – Новый инновационный фрикционный материал, накладки которого состоят из смеси керамического наполнителя, углеродного волокна и кевлара, разработанные как износостойкая, высокопрочная и стойкая к высоким рабочим температурам альтернатива органическим накладкам. По фрикционным качествам, накладки FiberTuff очень похожи на органические накладки. Но способны выдерживать на 10-15% больше крутящего момента, чем органика (без увеличения прижимной силы). Срок службы данного состава превосходит органический в 2-4 раза. Термостойкость увеличена до 400°С. При использовании данного сцепления, отмечается улучшение четкости включения сцепления.

Kevlar – фрикционные накладки изготовленные из кевларового волокна — полимерного материала, пришедшего в автомобилестроение из авиакосмической промышленности. Кевлар применяется также для изготовления бронежилетов и кузовов суперкаров, вроде Ferrari Enzo — деталей весьма прочных и очень легких. Кевларовые сцепления обладают износостойкостью, в 5-10 раз превышающей органические накладки. Они обладают повышенной жаропрочностью и не изнашивают рабочие поверхности маховиков и прижимных дисков. Но при установке требуют грамотного монтажа – накладки очень чувствительны к чистоте и качеству установки , а затем требуется деликатная обкатка в течение минимум 1000 км. Термостойкость кевларовых накладок достигает 370°С. Диск сцепления с такими накладками хорошо подходит для продолжительной жесткой эксплуатации машины.

Металлокерамика – бывает разная: алюминиевая, чугунная, медная.
В большинстве производимых сцеплений применяют металлокерамические накладки, изготовленные на медной основе. Диски сцепления с этими накладками обладают высоким коэффициентом трения и выдерживают весьма высокие температурные режимы (до 600°С). Они очень популярны в автоспорте и тюнинге, поскольку при равных размерах диска передаваемый крутящий момент может возрасти вдвое. Недостаток таких накладок — их агрессивность к сопряженным деталям. Они относительно быстро изнашивают поверхности трения маховика и прижимного диска корзины. Поэтому рекомендованы для использования только на спортивных и гоночных автомобилях.

Carbon – сцепления на базе углеродных композитов. Главная особенность в том, что прижимной и ведомый диски, а также сопряженная поверхность маховика выполнены из углерода. Он обеспечивает необходимый коэффициент трения (поскольку коэффициент трения углерода по чугуну очень низкий) и максимальную износостойкость. Этот механизм обладает неимоверным температурным пределом (2500°С). Долговечность в 5 раз выше “органики”. Единственный недостаток – высокая стоимость.

См. так же:Описание устройства сцепления (с лапками)Автоматические трансмиссии. Учебное пособие для вузов. Обзор муфты сцепления УАЗ (муфта выключения сцепления с подшипником в сборе) MetalPart (bazashop.ru)Сцепление диафрагменное назначение и устройство. ОАО «ЗАВОЛЖСКИЙ МОТОРНЫЙ ЗАВОД». формат PDF (2Мб) Обзор муфты сцепления УАЗ компании MetalPartГлавный цилиндр сцепления, устройствоРабочий цилиндр сцепления, устройство

Как правильно пользоваться сцеплением на автомобиле

На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.

При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.

Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.

  • Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
  • Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.

Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.

  1. В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
  2. Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.

Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.

Устройство и принцип работы сцепления ВАЗ 2107

По своей сути, сцепление – это передаточное звено между коленвалом двигателя и первичным валом коробки передач. При этом простое нажатие педали разъединяет эти два узла: двигатель продолжает работать, не меняя оптимального режима, а водитель может переключить передачу на повышенную, пониженную или нейтраль.

Устройство сцепления ВАЗ 2107: 1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — выжимной подшипник с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления

Что было бы, если б коленвал и коробка передач соединялись напрямую? Как минимум, при остановке машины приходилось бы глушить мотор, а затем снова его заводить. Это сейчас по дорогам ездят автомобили с системой «Старт-Стоп», когда вместо холостого хода двигатель просто отключается, но на ВАЗ 2107 на такой «экстрим» не рассчитан ни аккумулятор, ни стартер, ни сам двигатель. Переключать передачи во время движения – тоже не лучший вариант, слишком сильной будет нагрузка на коробку. Да и самому двигателю такие рывки «здоровья» не прибавляют.

Итак, с помощью сцепления можно:

  • Передавать крутящий момент от коленвала двигателя на трансмиссию;
  • Разъединять двигатель и трансмиссию, прерывая передачу вращения.

Устройство сцепления на ВАЗ 2107 – это классическая схема сцепления, самая простая и понятная:

  1. Коленвал двигателя жестко соединен с маховиком, который вращается вместе с ним. Маховик выполняет две функции: поддерживает момент инерции, чтобы поршни двигателя не замерли в «мертвой точке», и служит одним из элементов системы сцепления;
  2. Ведомый (фрикционный) диск является передаточным звеном между маховиком и нажимным диском. Он установлен на первичный вал коробки передач и соединяет элементы сцепления за счет силы трения;
  3. Нажимной (ведущий) диск жестко соединен с корзиной сцепления. Его задача – плотно прижимать ведомый диск к маховику, тогда момент вращения будет передаваться на ведомый диск и от него – на коробку передач;
  4. Корзина сцепления состоит из кожуха и системы лепестковых пружин, которые при нажатии сдвигают выжимной диск назад и разъединяют его с ведомым диском. Когда на пружины нет давления, они выталкивают ведущий диск вперед, чтобы он прижимал ведомый диск к маховику. Кожух корзины жестко соединен с маховиком и вращается вместе с ним;
  5. Выжимной подшипник – обязательный элемент системы сцепления. При нажатии на него происходит нажатие на лепестковую пружину корзины;
  6. Управляет сцеплением водитель, нажимая на педаль, от которой усилие передается на подшипник через систему тяг и гидравлической системы.

Как видно из описания, это «сухое» (не в масляной ванне) однодисковое сцепление, с механическим выжимным подшипником и постоянным подключением (система замкнутого типа). Для передачи усилия, которое водитель прикладывает к педали, используется гидравлика.

Устройство гидропривода сцепления

Отдельно нужно сказать о гидравлическом приводе. Благодаря ему, можно использовать несжимаемость жидкости (сохранение постоянного объема даже под большим давлением) и передавать усилие по сложной траектории. Нет необходимости ставить сложные тяги и рычаги, гидравлика отлично справляется со своей задачей.

Схема привода ВАЗ 2107

Система гидропривода включает несколько элементов:

  1. Педаль сцепления;
  2. Главный цилиндр с расширительным бачком;
  3. Рабочий цилиндр с толкателем;
  4. Трубопровод и шланг;
  5. Выжимная вилка.

Принцип работы:

  1. Усилие передается от педали через толкатель на шток главного цилиндра;
  2. Поршень цилиндра идет вперед и выталкивает порцию жидкости в трубопровод, ведущий к рабочему цилиндру;
  3. Жидкость давит на поршень рабочего цилиндра, объединенный с толкателем. Толкатель выходит вперед и надавливает на выжимную вилку;
  4. Вилка отводит выжимной подшипник от лепестковой пружины корзины сцепления.

Благодаря гидроприводу включать и выключать сцепление можно плавно, не допуская рывковых нагрузок на двигатель и коробку передач. Поэтому и говорят, что бросить сцепление – один из «смертных грехов» водителя (и, кстати, именно поэтому у новичков сцепление быстро «горит»).

Как работает сцепление и что делает педаль сцепления

Итак, как уже было сказано выше, сцепление можно считать основным связующим звеном между ДВС и коробкой передач. Давайте разберем его назначение и устройство. В первую очередь, механизм сцепления служит для соединения коробки передач с мотором. Также данный узел позволяет не только передавать, но и прерывать поток мощности от двигателя на коробку передач.

Фактически, это становится возможным благодаря прижатию и разжиманию дисков с фрикционными накладками. Если максимально упростить информацию, чтобы было понятно, одна сторона узла сцепления крепится к маховику двигателя. К другой стороне присоединен вал коробки передач. Когда водитель не нажимает на педаль сцепления, диски плотно прижаты друг к другу, что и позволяет передавать крутящий момент от маховика на вал КПП.

Если же водитель нажимает на педаль сцепления, диски сцепления размыкаются, тем самым прекращается передача крутящего момента. Так вот, размыкание дисков и прекращение передачи усилия от ДВС на КПП необходимо для включения передач.

Следовательно, принцип действия является таковым: во время нажатия на педаль сцепления диски между собой разводятся, вследствие чего можно переключиться на нужную передачу. После того, как водитель включил нужную передачу, педаль сцепления отпускается, диски смыкаются и мотор снова передает усилие, вращая колеса через трансмиссию.

Становится понятно, что механизм сцепления является немаловажным составляющим. Без сцепления автомобиль попросту не сможет начать свое движение, а в процессе езды переключать передачи будет достаточно сложно или невозможно. Например, без использования педали сцепления удается понизить передачу, что под силу опытному водителю.

Однако переключение на ступень выше без сцепления становится намного более сложной задачей.  Также не следует забывать и о том, что такие переключения будут жесткими, в значительной степени возрастает риск повредить зубья шестерен коробки передач. 

Как видно, эксплуатация авто с МКПП предполагает активное использование сцепления. Каждый водитель автомобиля с механической коробкой передач имеет ряд наработанных привычек. Например, выжим сцепления перед запуском двигателя служит гарантией того, что если водитель забыл поставить автомобиль на нейтральную передачу, не произойдет неожиданного движения машины в момент запуска ДВС. Это повышает безопасность и позволяет избежать ДТП.

Для управления сцеплением используется исключительно левая нога. Еще возле педали сцепления есть площадка, куда левая нога убирается для отдыха в том случае, если нет необходимости выжимать сцепление. Данное решение позволяет исключить дискомфорт и онемение ноги, если ее удерживать над педалью в случае преодоления больших дистанций на 4-ой или 5-ой  передаче, которые используется на трассе после набора скорости.

Также не рекомендуется держать ногу над педалью сцепления или ставить ногу на педаль, не нажимая на нее. В этом случае срок службы узла сцепления значительно сокращается, так как  даже легкое нажатие приводит к тому, что сцепление смыкается не до конца и изнашивается.   

Продлеваем срок службы

Сцепление – это, пожалуй, один из самых износостойких элементов в конструкции автомобиля. Качественный узел может прослужить 200 и более тысяч километров. Однако чтобы ваша коробка не потребовала ремонта уже на первых неделях езды, нужно знать определенные правила эксплуатации.

При вождении автомобиля с механической трансмиссией, прежде всего, научитесь правильно нажимать на педаль. В то время когда вы приотпускаете ее, происходит включение сцепления. В этот момент пружина нажимного диска подводит ведомый механизм к маховику. Происходит плавное притирание элементов. За счет этого диск немного проскальзывает относительно маховика, последний также начинает вращаться.

На следующем этапе необходимо дать небольшое время узлу для того, чтобы обороты максимально сравнялись. Для этого следует удерживать педаль в средней позиции примерно 2-3 секунды. После этого количество оборотов маховика приблизится к скорости вращения диска. Итак, автомобиль потихоньку набирает ход.

Что же делать далее? Когда маховик с ведомым и нажимным диском стал самостоятельно вращаться с одинаковой скоростью и без проскальзываний, происходит максимально высокая передача крутящего момента. В таком случае необходимость в повторном разъединении КПП и двигателя отсутствует (разве что при экстренном торможении). Как только машина тронулась, а на спидометре уже больше 10 километров в час, педальку можно смело отпускать. Дальше аналогичным путем переключаемся на повышенную передачу вплоть до 5-й (если это позволяют ПДД).

Обратите внимание, что если при трогании с места внезапно сбросить педаль сцепления, машина будет ехать рывками, а через 3-4 секунды заглохнет. Это происходит из-за того, что при резкой притирке дисков мотор передает всю мощь на коробку, тем самым попросту рвет ее. Нагрузка на шестерни увеличивается, соответственно, ресурс механизмов трансмиссии уменьшается

Резко отпускать педаль при трогании не следует, так как это очень вредит вашему автомобилю. Лишь когда машина набирает достаточно большую скорость (это уже 3-5 передача), при переключении на повышенную можно «бросать» педаль сходу

Нагрузка на шестерни увеличивается, соответственно, ресурс механизмов трансмиссии уменьшается. Резко отпускать педаль при трогании не следует, так как это очень вредит вашему автомобилю. Лишь когда машина набирает достаточно большую скорость (это уже 3-5 передача), при переключении на повышенную можно «бросать» педаль сходу.

  • https://pricurivatel.ru/ustrojstvo-i-princip-raboty-scepleniya-avtomobilya
  • https://scart-avto.ru/remont/kak-rabotaet-stseplenie-v-avtomobile-printsip-raboty-dlya/
  • https://principraboty.ru/princip-raboty-scepleniya/
  • https://AutoTopik.ru/sceplenie/1335-ustroystvo.html
  • https://TechAutoPort.ru/transmissiya/sceplenie-i-mufty/sceplenie.html
  • https://exist.ru/Document/Articles/2337
  • https://avtonov.info/sceplenie-avtomobilja-naznachenie-i-ustrojstvo
  • https://FokSevmash.ru/hodovaya-chast-i-transmissiya/privod-scepleniya.html
  • https://www.syl.ru/article/158580/new_stseplenie-avtomobilya-printsip-rabotyi-stsepleniya-avtomobilya—shema

Post Views: 2 158

Конструкция и принцип работы главных цилиндров сцепления

Наиболее просто устроены ГЦС с вынесенным и установленном на корпусе бачком. Основу устройства составляет литой корпус цилиндрической формы, на котором выполнены проушины для монтажных болтов и другие детали. С одного торца корпус закрыт резьбовой пробкой или пробкой со штуцером для соединения с трубопроводом. Если корпус закрыт глухой пробкой, то штуцер располагается на боковой поверхности цилиндра.

В средней части цилиндра выполняется штуцер для соединения с бачком посредством шланга или посадочное место для установки бачка непосредственно на корпус. Под штуцером или в посадочном месте в корпусе цилиндра выполнено два отверстия: компенсационное (впускное) отверстие малого диаметра и перепускное отверстие увеличенного диаметра. Отверстия располагаются таким образом, чтобы при отпущенной педали сцепления компенсационное отверстие располагалось перед поршнем (со стороны контура привода), а перепускное — за поршнем.

В полости корпуса установлен поршень, с одной стороны которого располагается толкатель, связанный с педалью сцепления. Торец корпуса со стороны толкателя закрыт гофрированным защитным резиновым колпачком. При отжатой педали сцепления поршень отводится в крайнее положение расположенной внутри цилиндра возвратной пружиной. В двухпоршневых ГЦС используется два поршня, расположенных друг за другом, между поршнями находится уплотнительное кольцо (манжета). Применение двух поршней улучшает герметичность контура привода сцепления и повышает надежность работы всей системы.

Работают такие цилиндры следующим образом. Когда педаль сцепления отпущена, поршень под воздействием возвратной пружины находится в крайнем положении и в контуре привода сцепления поддерживается атмосферное давление (так как рабочая полость цилиндра связана с бачком через компенсационное отверстие). При нажатии на педаль сцепления поршень под воздействием усилия ноги движется и стремится сжать жидкость в контуре привода. При движении поршня компенсационное отверстие закрывается и давление в контуре привода повышается. Одновременно через перепускное отверстие жидкость поступает за обратную сторону поршня. За счет роста давления в контуре поршень рабочего цилиндра перемещается и двигает вилку выключения сцепления, которая толкает выжимной подшипник — сцепление выключается, можно переключать передачу.

В момент отпуска педали поршень в ГЦС возвращается в первоначальное положение, давление в контуре падает и сцепление включается. При возврате поршня скопившаяся за ним рабочая жидкость выдавливается через перепускное отверстие, что приводит к замедлению движения поршня — это обеспечивает плавное включение сцепления и возврат всей системы в первоначальное состояние.

Если в контуре происходит утечка рабочей жидкости (что неизбежно вследствие недостаточной плотности соединений, порчи уплотнений и т.д.), то нужное количество жидкости поступает из бачка через компенсационное отверстие. Также это отверстие обеспечивает постоянство объема рабочей жидкости в системе при изменении ее температуры.

Конструкция и работа цилиндра с интегрированным резервуаром для рабочей жидкости несколько отличается от описанной выше. Основу этого ГЦС составляет литой корпус, установленный вертикально или под наклоном. В верхней части корпуса выполнен резервуар для рабочей жидкости, под резервуаром расположен цилиндр с подпружиненным поршнем, а через резервуар проходит соединенный с педалью сцепления толкатель. На стенке резервуара может располагаться пробка для долива рабочей жидкости или штуцер для соединения с вынесенным бачком.

Поршень в верхней части имеет углубление, вдоль поршня высверлено отверстие малого диаметра. Толкатель установлен над отверстием, в отведенном состоянии между ними остается зазор, через который в цилиндр поступает рабочая жидкость.

Работает такой ГЦС несложно. При отпущенной педали сцепления в гидравлическом контуре наблюдается атмосферное давление, сцепление включено. В момент нажатия на педаль толкатель движется вниз, перекрывает отверстие в поршне, герметизируя систему, и толкает поршень вниз — давление в контуре повышается, и рабочий цилиндр приводит в действие вилку выключения сцепления. При отпуске педали описанные процессы выполняются в обратном порядке. Утечки рабочей жидкости и изменение ее объема вследствие нагрева компенсируются через отверстие в поршне.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий