Рулевое управление автомобиля

Диагностика и техническое обслуживание

Проверка люфта должна проводиться регулярно. При этом водитель может довериться своим ощущениям или воспользоваться возможностями люфтометра. Рекомендуется проверять систему на предмет отсутствия заеданий.

В процессе технического осмотра, проводимого на транспортном средстве впервые, необходимо оценить состояние гидроусилителя. Если масло в системе не достигает регламентируемого уровня, то его необходимо до него долить до него. Подлежит проверке картер рулевого управления. Проводиться диагностика затяжки клиньев. Чтобы проверить шплинтовку и цапф, следует смазать рулевые тяги.

Второй и последующий технический осмотр включает в себя сложный диагностический комплекс, который сложно реализовать без специализированного оборудования, а также профессиональных навыков. Поэтому, объективным решением будет для этих целей обратиться за помощью в сервисный центр.

Проверка допустимого суммарного люфта

Суммарным люфтом автомобиля называется угол рулевого управления, на которое оно отклоняется при повороте руля до момента поворота колёс.

Параметр проверяется люфтометром. Для легковых авто он соответствует 10 градусам, тогда как для грузовиков, его нормативное значение должно быть равным 25 градусам.

https://youtube.com/watch?v=39x8ZWn-Dxo

ПОСМОТРЕТЬ ВИДЕО

Принцип работы гидроусилителя

При повороте руля, происходит перемещение золотника. Переместившись, он перекрывает сливную магистраль и в одну из полостей цилиндра под давлением подается рабочая жидкость. В это же время поршень и шток под воздействием на них давления жидкости поворачивают колеса и корпус распределителя в сторону движения золотника. Корпус распределителя настигает золотник лишь тогда, когда тот прекращает свое движение.После этого поворот считается выполненным. После поворота (руль устанавливается в прямолинейное положение) и золотник возвращается в нейтральное положение и открывается магистраль для слива жидкости.

Регулировка

Однозначно можно сказать, что рулевое управление нуждается в регулировке. Как правило, это касается черявичого элемента или шестерни-рейки. Именно в этих механизмах появляется люфт, что влияет на износ остальных деталей устройства. Если вовремя не регулировать РУ, то это может привести к полому рейки и большим денежным потерям. Для того, чтобы выполнить данную процедуру, необходимо обратиться к специалистам на СТО, которые проведут ее точно по регламенту производителя. Самостоятельно же, при наличии соответствующих навыков, можно менять лишь ряд деталей, например, подшипники.

Виды усилителей

Чтобы автолюбителю было проще управлять своим транспортным средством, его оснащают усилителем рулевого колеса. Выделяется три вида данного механизма:

  • гидравлический – самый распространенный вид усилителя. Его любят за компактные размеры, простую конструкцию и ремонтопригодность. При этом необходимо постоянно следить за уровнем технической жидкости;
  • электрический – самый современный на сегодня механизм. Его просто настраивать, он не «ест» топливо за счет дополнительной нагрузки на силовой агрегат и считается достаточно надежным. Главный плюс ЭУР – машина управляется без участия водителя;
  • электрогидравлический – он базируется на обычном гидравлическом усилителе, но насос приводится в действие с помощью электроники.

Требования к системе рулевого управления

Система рулевого управления преобразует соз­даваемые водителем вращательные движения рулевого колеса в изменение угла поворота управляемых колес автомобиля. Конструкция и схема системы призваны обеспечить удобное и безопасное рулевое управление автомобиля во всех ситуациях и на всех скоростях. Вся си­стема рулевого управления, от рулевого колеса и до управляемых колес, должна в этих целях обладать следующими свойствами.

Передача инициируемых водителем руля­щих движений на рулевом колесе без люфта особенно важна при движении по прямой. Это гарантирует безопасное, неутомительное для водителя управление автомобилем, пре­жде всего на средних и высоких скоростях.

Поэтому рулевой механизм должен быть очень жестким. Это необходимо для обеспе­чения точной управляемости и преодоления отклонения от заданного угла поворота ру­левого колеса под действием изменяющихся возвратных сил, возникающих, например, при изменении бокового ускорения.

Слабое трение в рулевом механизме по­зволяет водителю получать через реактивные силы тактильную обратную связь, дающую информацию о коэффициенте сцепления между дорогой и шинами. Слабое трение также помогает колесам выровняться для движения по прямой. В системах рулевого управления с мускульной энергией слабое трение обеспечивает небольшие движущие силы. В системах рулевого управления с усилителем оно повышает эффективность управления.

Кинематические параметры рулевого управления и конструкция управляемой оси автомобиля должны быть такими, чтобы во­дитель мог чувствовать величину сцепления между шинами и дорогой.

Требования к рулевому управлению

Требованиями к функционированию системы рулевого управления являются:

Легкое, безопасное рулевое управление автомобилем. Сюда, к примеру, относится тенденция рулевого управления автоматиче­ски возвращаться в положение прямолиней­ного движения при отпускании руля.

Максимально возможное демпфирование колебаний, передаваемых от колес автомо­биля на рулевое колесо при движении по не­ровным дорогам. Но этот процесс не должен приводить к потере обратной связи в рулевом управлении.

Для обеспечения чистого качения колес и, соответственно, предотвращения их из­быточного износа вся рулевая кинематика должна удовлетворять условию Аккермана. Это означает, что оси управляемых колес должны пересекаться в одной точке с осью задних колес (рис. «Условие Аккермана» ).

Достаточно жесткая схема всех компонен­тов рулевого механизма означает, что даже малые инициируемые водителем рулевые движения преобразуются в изменение на­правления управляемых колес, обеспечивая безопасную и точную управляемость авто­мобиля.

Угол поворота рулевого колеса от упора до упора по соображениям комфорта дол­жен быть как можно меньше при парковке и движении с небольшой скоростью. Однако на средних и высоких скоростях рулевое управ­ление не должно быть столь чувствительным.

Требования законодательства, предъявляемые к системам рулевого управления автомобилей

Требования законодательства, предъявляе­мые к системам рулевого управления автомо­билей, описаны в международных правилах ECE-R79. К этим требованиям, наряду с базовыми функциональными требованиями, относятся максимально допустимые управ­ляющие силы для исправной и неисправной систем рулевого управления. Эти требования регламентируют прежде всего поведение ав­томобиля и рулевого управления при въезде на круг и выезде с круга. Для автомобилей всех категорий: после отпускания рулевого колеса при движении автомобиля по окруж­ности на скорости 10 км/ч, радиус поворота автомобиля должен увеличиться или как ми­нимум остаться тем же.

Для автомобилей категории М1 (легко­вые автомобили с числом посадочных мест до 8): когда автомобиль в тангенциальном направлении выезжает из круга с радиусом 50 м на скорости 50 км/ч, в системе рулевого управления не должно возникать никаких не­обычных вибраций. В автомобилях категорий М2, М3, N1, N2 и N3 это поведение должно демонстрироваться на скорости 40 км/ч или, если это значение не достигается, то на мак­симальной скорости.

Это поведение также предписывается в случае неисправности у автомобилей с гидро- или электроусилителем рулевого управления. У автомобилей категории М1 это должно быть возможно в случае отказа сер­вопривода рулевого управления для въезда со скоростью 10 км/ч в течение 4 секунд в круг радиусом 20 м. Управляющее усилие на рулевом колесе не должно превышать 30 даН (табл. «Нормы рабочих усилий в системе рулевого управления» ).

Исполнительный (распределительный) механизм

Он выполнен единым целым с корпусом рулевой рейки. К нему подводятся шланги от насоса ГУР. От него трубками или шлангами передается давление жидкости к гидроцилиндру рейки.

Внутри него находится два вала – распределительный и торсионный. На последнем закреплен поворотный золотник. Торсионный вал отличается определенной гибкостью. При вращении «баранки» он закручивается, причем рейка остается неподвижной. При закручивании вала в корпусе распределительного механизма открываются определенные полости. Через них давление жидкости давит на ту или другую сторону гидравлического цилиндра усилителя. Происходит его смещение и движение рулевого механизма в нужном направлении.

Вращение торсиона относительно распределительного вала ограничено стопором. Он позволяет торсионному валу незначительно двигаться относительно распределительного вала. Если насос ГУР не работает, и нет давления жидкости, стопор дает возможность водителю вращать колеса без участия гидравлического усилителя.

Разберем схему работы распределительного механизма гидроусилителя руля. Существует три его положения – нейтраль, когда колеса прямо или рулевое колесо неподвижно, поворот влево и вправо.

Нейтральное положение

Условно говоря, в таком положении золотника распределительного механизма сливные и напорные отверстия остаются приоткрытыми. Жидкость от насоса ГУР равномерно поступает в обе полости цилиндра, часть её сливается обратно в бачок. С двух сторон гидроцилиндра создается одинаковое давление, поршень остается в нейтральном положении.

Поворот влево

Поворачивая руль влево, закручиваем торсион. Проходное сечение между валом распределителя и поворотным золотником, внутри которого помещен торсион, увеличивается. Через открытую полость жидкость устремляется в левую часть гидравлического цилиндра, на схеме показано красным цветом. С той стороны повышается давление, цилиндр смещается вправо, увлекая за собой рейку, колеса поворачивают влево.

В этот момент в противоположной стороне цилиндра находится жидкость, которую нужно куда-то слить, потому что для её сжатия понадобится дополнительная сила и водителю тяжело повернуть руль влево. В этот момент в распределительном механизме открываются сливные полости, обозначенные желтой стрелкой. Она через них сливается обратно в расширительный бачок ГУР.

Если перестают вращать руль, вал распределительного механизма возвращается в нейтральное положение. Проходные сечения между валом распределителя и золотником становятся первоначальными. Гидравлическая схема гидроусилителя рулевого управления возвращается в исходное состояние, давление в обеих полостях цилиндра уравнивается, поршень прекращает движение.

Поворот вправо

Аналогичным образом происходит при повороте вправо. Золотник поворачивается в правую сторону относительно распределительного вала. Увеличиваются зазоры проходных сечений, жидкость поступает в правую часть цилиндра. Одновременно, через открытые сливные полости, она сливается из левой полости гидроцилиндра. Поршень двигается влево вместе с рейкой, осуществляется поворот колес в правую сторону.

Повернув «баранку» на определенный угол, и прекратив её вращение, вал распределительного механизма возвращается в нейтральное положение относительно золотника. Размеры проходных сечений возвращаются в исходные значения. Схема гидравлического усилителя переходит в начальное состояние, поршень перестает двигаться.

Рулевой привод

Рулевой привод служит для передачи усилия от рулевого механизма к управляемым колесам. Он состоит из рулевой сошки 1, продольной рулевой тяги 7, верхнего рычага 11 левого поворотного кулака, правого и левого нижних рычагов 24 поворотных кулаков 25 и поперечной рулевой тяги 14. Перечисленные детали соединены между собой шарнирно.

Рулевая сошка одним концом жестко связана с наружным концом вала, а другим через продольную рулевую тягу 7 шарнирно соединена с верхним рычагом 11 поворотного кулака 25 левого колеса. Крепление рулевой сошки к валу осуществляется на мелких конусных шлицах при помощи гайки.

Продольная рулевая тяга соединяется с рулевой сошкой и рычагом поворотного кулака при помощи шаровых пальцев 2, закрепленных на концах сошки и рычага. Шаровые пальцы входят в наконечники 5 продольной рулевой тяги, в которых установлены сухари 8. Сухари охватывают шаровые пальцы, под действием сжимающих пружин 4. Пробки 9, ввернутые в наконечники продольной рулевой тяги, дают возможность регулировать затяжку пружин и предохраняют пружины и сухари от выпадания из наконечников тяги. Чтобы пробки не могли самопроизвольно отвертываться, их шплинтуют. Ограничители 3 ограничивают предельное сжатие пружин сухарей при их регулировке. Наличие пружин в соединениях тяг способствует смягчению ударов, передающихся от колес автомобиля. Для защиты шаровых пальцев и сухарей от пыли и грязи места прохода шаровых пальцев в. наконечники тяг закрываются уплотнительными кольцами 10. Смазка к шаровым пальцам и сухарям подводится через масленки 6, установленные на наконечниках продольной рулевой тяги.

Рычаги поворотных кулаков устанавливаются в отверстиях вилок кулаков на шпонках и крепятся гайками 12, которые затем шплинтуются. Рычаги поворотных кулаков автомобилей с ведущим передним мостом выполняются заодно с крышками подшипников шкворней. Соединение поперечной рулевой тяги с рулевыми рычагами выполнено также шарнирно. Наконечники крепятся на поперечной рулевой тяге при помощи резьбы (с одной стороны правая, с другой — левая) и стяжными болтами 17. Вращением этих наконечников можно изменять длину тяги и тем самым регулировать схождение передних колес.

Для соединения поперечной рулевой тяги с рычагами поворотных кулаков колес используются обычно саморегулирующиеся конические шарнирные соединения. Палец 18 поворотного рычага конической поверхностью прижимается к вкладышу 23 усилием пружины. 20. Вкладыш устанавливается в наконечник поперечной рулевой тяги и от повертывания стопорится винтом, входящим в паз вкладыша. Прижимная пружина верхним концом упирается в пяту 22 пальца, а нижним — в шайбу 21, закрепленную в наконечнике стопорным кольцом. По мере износа конических поверхностей пальца и вкладыша зазор между трущимися поверхностями выбирается перемещением пальца в осевом направлении под действием прижимной пружины.

На автомобилях повышенной проходимости шарнирное соединение поперечной рулевой тяги осуществляется с помощью пальцев и бронзовых втулок. Поперечная рулевая тяга таких автомобилей имеет вильчатые наконечники.

Правильным поворотом направляющих колес является только такой поворот автомобиля, при котором его колеса будут катиться по дороге без скольжения. А это возможно лишь в том случае, если направляющие колеса при повороте автомобиля будут поворачиваться на различные углы, причем внутреннее по отношению к центру поворота колесо должно поворачиваться на больший угол, чем наружное.

Одновременность поворота направляющих колес на необходимые углы обеспечивается рулевой трапецией, которую составляют передняя ось, рулевые рычаги и поперечная рулевая тяга. Правильные соотношения сторон и углов рулевой трапеции выбираются при конструировании автомобиля.

Устройство рулевого управления

Рассмотрим устройство рулевого управления колесных машин с управляемыми колесами. Конструктивно рулевое управление состоит из:

  • рулевого механизма;
  • усилителя;
  • рулевого привода.

Компоновка рулевого управления грузового автомобиля с управляемыми колесами первой оси (КамАЗ, МАЗ) показана на рисунке. Использование регулируемых рулевых колонок позволяет менять угол наклона ступенчато, как правило, с шагом 5° в пределах до 40°. Рулевое управление с передними управляемыми колесами применяется у двух- и трехосных автомобилей. Компоновка и конструкция рулевого управления сравнительно просты и принципиально могут быть сведены к схемам, приведенным на рисунке.

На четырехосных автомобилях чаще всего устанавливают рулевое управление с поворотом колес первой и второй осей, первой и четвертой, либо всех осей.

Для многоосных (шестиосных) шасси большой грузоподъемности используют рулевое управление с поворотом колес первых трех осей (в последних схемах для повышения маневренности применяют поворотные колеса самоустанавливающегося типа на шестой оси). При прямолинейном движении автомобиля самоустанавливающиеся колеса, связанные друг с другом приводом, блокируются специальным устройством. При движении в повороте с повышенной кривизной траектории эти колеса разблокируются и свободно поворачиваются в режиме слежения.

Конструкция и виды рулевого привода


Устройство привода рулевой рейки К приводу относятся все элементы, находящиеся между рулевым механизмом и управляемыми колесами. Структура узла зависит от типа используемой подвески и рулевого механизма.

Рулевой привод механизма “шестерня-рейка”

Данный вид привода, входящий в состав рулевой рейки, получил наибольшее распространение. Он состоит из двух горизонтальных тяг, рулевых наконечников и поворотных рычагов стоек передней подвески. Рейка с тягами соединяется при помощи шаровых шарниров, а наконечники фиксируются стяжными болтами либо при помощи резьбового соединения.

Также следует заметить, что с помощью рулевых наконечников регулируется схождение колес передней оси.

Привод с механизмом типа «шестерня – рейка» обеспечивает поворот передних колес автомобиля на разные по величине углы.

Рулевая трапеция


Рулевая трапеция с разрезной тягой Рулевая трапеция обычно применяется в рулевом управлении с червячным или винтовым механизмом. Она состоит из:

  • боковых и средней тяг;
  • маятникового рычага;
  • правого и левого поворотного рычага колес;
  • рулевой сошки;
  • шаровых шарниров.

Каждая тяга имеет на своих концах шарниры (опоры), которые обеспечивают свободное вращение подвижных деталей рулевого привода относительно друг друга и кузова автомобиля.

Рулевая трапеция обеспечивает поворот управляемых колес на разные углы. Нужное соотношение углов поворота осуществляется путем подбора угла наклона рычагов относительно продольной оси автомобиля и длины рычагов.

Исходя из конструкции средней тяги трапеция бывает:

  • с цельной тягой, которая применяется в зависимой подвеске;
  • с разрезной тягой, используемой в независимой подвеске.

Также она может отличаться по типу расположения средней тяги: перед передней осью либо после нее. В большинстве случаев рулевая трапеция применяется на грузовых автомобилях.

Рулевой наконечник с шаровым шарниром


Шаровый шарнир Шаровой шарнир сделан в виде съемного наконечника рулевой тяги, в его состав входят:

  • корпус шарнира с заглушкой;
  • шаровой палец с резьбой;
  • вкладыши, которые обеспечивают вращение шарового пальца и ограничивают его перемещение;
  • защитный кожух (“пыльник”) с кольцом для фиксации на пальце;
  • пружина.

Шарнир выполняет передачу усилия от рулевого механизма к управляемым колесам и обеспечивает подвижность соединения элементов рулевого привода.

Шаровые опоры воспринимают все удары от неровностей дорожной поверхности и потому подвержены быстрому износу. Признаками износа шаровых опор являются люфт и стук в подвеске при проезде неровностей. В этом случае неисправную деталь рекомендуется заменить на новую.

По способу устранения зазоров шаровые шарниры подразделяются на:

  • саморегулируемые – они не требуют регулировок в процессе эксплуатации, а появившийся в результате износа деталей зазор выбирается благодаря поджиманию головки пальца с помощью пружины;
  • регулируемые – в них зазоры между деталями устраняет затяжка резьбовой крышки;
  • нерегулируемые.

Классификация рулевого управления

Принципиальных отличий между разными типами рулевого управления нет, но часто его классифицируют по типу редуктора рулевого механизма:

Тип редуктора «шестерня-рейка».

Устройство рулевого управления с редуктором типа «шестерня-рейка» 1 — руль; 2 — рулевой вал с шестерней; 3 — рейка; 4 — рулевые тяги; 5 — поворотные рычаги; 6 — колеса.

Это самая распространенная разновидность рулевого редуктора, которая за годы использования показала свою надежность.

Принцип действия очень простой: на рулевом валу (который отходит от рулевой колонки) закреплена продолговатая шестерня. Рулевая рейка имеет зубчатый участок, который входит в зацепление с этой шестерней. При вращении руля шестерня вращается на месте и толкает зубчатую рейку в одну или другую сторону. Соответственно приходят в действие и рулевые тяги.

Передаточное число на рейке может быть неизменным, а может меняться ближе к краям. Получить такой эффект просто: нужно изменить наклон зубьев на рейке. Благодаря этому для поворота на большой угол не нужно «крутить баранку» до посинения, количество оборотов руля для маневра сокращается.

Тип редуктора «червяк-ролик».

Устройство рулевого управления с редуктором типа «червяк-ролик»: 1 — руль; 2 — рулевой вал с червяком; 3 — ролик с валом сошки; 4 — рулевая сошка; 5 — средняя тяга; 6 — боковые тяги; 7 — поворотные рычаги; 8 — колеса; 9 — маятниковый рычаг; 10 — шарниры рулевых тяг.

Этот тип редуктора можно назвать устаревшим, поскольку его давно перестали устанавливать на автомобили. Тем не менее, он еще встречается на старых машинах.

В основе заложена червячная передача, в которой червяк закреплен на дополнительном валу рулевой колонки. При повороте руля вращается червяк и приводит в движение ролик, стоящий с ним в зацеплении.

Сдвигаясь по нарезке червяка, ролик заставляет вращаться вал, на который он установлен и к которому присоединен рычаг рулевой сошки. Вал вращается, рулевая сошка описывает полукруг, приводит в действие остальные элементы рулевого привода (среднюю тягу, маятниковый рычаг, боковую тягу, поворотные кулаки колес).

Винтовой тип редуктора.

Устройство редуктора рулевого управления винтового типа

По принципу действия он очень похож на червячный редуктор. Однако на дополнительном валу рулевой колонки установлен не червяк, а винт. Он входит в зацепление с гайкой, на наружную сторону которой нанесен зубчатый обод. Когда вращается винт, гайка поворачивается в одну или другую сторону и поворачивает рулевую сошку, а она уже направляет остальные компоненты рулевого привода.

В усовершенствованных моделях на винт ставится шариковая шайба, которая служит промежуточным элементом между ним и гайкой. При вращении винта шарики сдвигают шайбу, а она поворачивает гайку. Когда на легковые автомобили начали массово устанавливать гидроусилитель руля (ГУР), червячный редуктор вышел из обихода – к нему ГУР не поставишь. На его место пришел реечный привод, а винтовой «перекочевал» на тяжелые автомобили.

Кроме редуктора, в рулевом механизме могут отличаться типы передачи усилия на управляемые колёса. Более простой считается конструкция с реечным редуктором: от рулевой рейки отходят две рулевые тяги, которые крепятся к поворотным кулакам колес. Для того, чтобы соединение было подвижным, но без люфтов, используются шаровые наконечники.

На редуктор с червячной или винтовой передачей подходит другой тип рулевого механизма. Его называют рулевой трапецией и состоит он из довольно сложной системы рычагов. Сложность конструкции оправдывается большей мощностью, так что рулевая трапеция с винтовым редуктором ставится на грузовые автомобили, в то время как рулевая рейка лучше подходит для легковых.

И, наконец, систему рулевого управления классифицируют по типу усилителя: ГУР, ЭГУР и ЭУР.

  1. ГУР – гидравлический усилитель, классический тип. Он и сегодня ставится на автомобили, но постепенно уступает дорогу более современным видам усилителя;
  2. ЭГУР – электрогидравлический усилитель руля. В нём электромотор выполняет вспомогательную функцию, в то время как основная работа выполняется гидравликой;
  3. ЭУР – электроусилитель, современный способ управлять автомобилем. Электромотор умножает усилие, которое водитель прикладывает к рулю, то есть работает без каких-либо гидравлических элементов.
Поделитесь в социальных сетях:FacebookX
Напишите комментарий