Классификация двигателей
Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.
Классификация двигателей в зависимости от рабочего цикла
В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов:
- Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
- Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.
Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними. А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска
Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов
А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска
Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов
И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.
Классификация двигателей в зависимости от конструкции
Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко
Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8
RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.
Классификация двигателей по принципу подачи воздуха
Подача воздуха также разделяет ДВС на два класса
- Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
- Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.
Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.
Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.
Схема
Ниже на рисунке показана типичная схема устройства двигателя автомобиля (одного цилиндра).
На этой схеме четко показаны основные элементы:
A – Распределительный вал.
B – Крышка клапанов.
C – Выпускной клапан, через который отводятся газы из камеры сгорания.
D – Выхлопное отверстие.
E – Головка цилиндра.
F – Полость для охлаждающей жидкости. Чаще всего там находится антифриз, который охлаждает нагревающийся корпус мотора.
G – Блок мотора.
H – Маслосборник.
I – Поддон, куда стекает все масло.
J – Свеча зажигания, образующая искру для поджога топливной смеси.
K – Впускной клапан, через который в камеру сгорания попадает топливная смесь.
L – Впускное отверстие.
M – Поршень, который движется вверх-вниз.
N – Шатун, соединенный с поршнем. Это основной элемент, который передает усилие на коленчатый вал и трансформирует линейное движение (вверх-вниз) во вращательное.
O – Подшипник шатуна.
P – Коленчатый вал. Он вращается за счет движения поршня.
Также стоит выделить такой элемент, как поршневые кольца (их еще называют маслосъемными кольцами)
Их нет на рисунке, однако они являются важной составляющей системы двигателя автомобиля. Данные кольца огибают поршень и создают максимальное уплотнение между стенками цилиндра и поршня
Они предотвращают попадание топлива в масляный поддон и масла в камеру сгорания. Большинство старых двигателей автомобилей ВАЗ и даже моторы европейских производителей имеют изношенные кольца, которые не создают эффективное уплотнение между поршнем и цилиндром, из-за чего масло может попадать в камеру сгорания. В такой ситуации будет наблюдаться повышенный расход бензина и “жор” масла.
Что представляет собой V-образный двигатель?
С увеличением числа цилиндров в двигателе рядные конструкции стали менее удобными, а потому им на смену пришла V-образная компоновочная схема. Она предполагает установку цилиндров с поршнями попарно, друг напротив друга и под углом. Последний получил наименование угол развала и может варьироваться от 10° до 120° между осями. Количество цилиндров в таких агрегатах от шести до двенадцати, но это всегда четное число. Многие автопроизводители благодаря V-образной компоновочной схеме получили возможность экспериментировать с количеством цилиндров, увеличивая их число до двадцати четырех, но в серийном производстве таких автомобилей пока нет.
В зависимости от величины угла развала достигаются определенные характеристики двигателя. Так, например небольшой угол позволяет объединить в моторе достоинства и рядных, и V-образных моторов.
V-образный двигатель
Среди плюсов V-образных моторов можно отметить:
- компактность конструкции;
- более длительный срок эксплуатации двигателя;
- эффективная и динамичная работа на различных оборотах.
В числе недостатков:
- конструкция такого агрегата более сложна, поскольку имеет две головки блока цилиндров;
- высокая стоимость изготовления;
- большие вибрации при работе;
- сложности с балансировкой.
Блок цилиндров
Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.
Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.
Четырёхцилиндровый блок
Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.
Восьмицилиндровый блок
Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.
Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.
Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.
Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.
Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.
Современные разработки
Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.
Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.
Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.
Главная классификация ДВС
Все существующие ДВС разделены на 3 вида:
- поршневые;
- роторные;
- газотурбинные.
В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.
В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.
Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.
Газотурбинный двигатель
Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться.
Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.
Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.
Видео: Принцип работы газотурбинного двигателя
Роторный ДВС
Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.
В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.
На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.
Роторные двигатели гораздо проще и эффективнее поршневых. Но по непонятной причине роторные агрегаты используются очень редко.
Видео: Принцип работы роторного двигателя
Поршневой двигатель
В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение. Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.
Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.
Видео: Принцип работы дизельного двигателя
Из чего изготавливают клапана
Седла клапанов изготавливаются из чугуна или стали, затем запрессовываются в головку блока цилиндров. Клапаны во время работы двигателя подвержены значительным механическим и тепловым нагрузкам, поэтому необходимо подбирать специальный сплав для изготовления детали.
Клапана для высокофорсированных двигателей должны хорошо охлаждаться, поэтому в них применяют клапаны с полым стержнем, с наполнением натрия внутри. При достижении рабочей температуры натрий плавится и начинает перетекать от тарелки клапана, к стержню равномерно распределяя тепло. Для равномерности теплопередачи и уменьшения нагара на фасках клапана применяют механизмы вращения клапана.
Виды двигателей
- Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
- Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
- В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
- Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
- Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
- Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.
Что касается эксплуатации…
Максимальная мощность развивается на высоких оборотах, что делает автомобиль относительно быстрым даже без турбонаддува. Но есть и минус таких двигателей — это слабая тяга при маленьких оборотах, которая делает движение трудным при большом уклоне дороги и высокой нагрузке. Поэтому приходится начинать движение на высоких оборотах, а это плохо сказывается на механизме сцепления. Второй минус — с нагрузкой заметно растет и расход бензина
На расход топлива следует обратить внимание. Если работа двигателя будет оптимальной, то он будет минимальным, но из-за загруженности дорог экономить в городе практически невозможно
Но у бензина есть свои плюсы, и один из них заключается в том, что даже при очень низких температурах топливо не нуждается в дополнительных присадках. А вот с дизельным все по другому. А еще, бензиновый легче запускается зимой, и требует меньшего времени на разогрев.
Также важный фактор это шум и вибрации мотора. И здесь, несомненно вырывается вперед бензиновый двигатель. А в дизельном двигателе воспламенение протекает под большим давлением, что значительно повышает вибрации, в результате чего и появляется рокот, который нельзя заглушить ни хорошей шумоизоляцией, ни демпферами.
Сравнение дизельного и бензинового двигателей
С точки зрения безопасности, бензомотор более пожаро- и взрывоопасен и требует более внимательного отношения к герметичности топливной системы и состоянию электрооборудования.
Что касается требования к качеству топлива, то бензиновый, более неприхотлив и , как правило, легко работает на топливе с более низким октановым числом. А вот дизельный двигатель всегда требует качественного топлива во избежание засорения топливного насоса и форсунок. Так же, дизель более требователен к состоянию и качеству фильтров и своевременности их замены, соответственно вынуждает автовладельца чаще обращаться в сервис.
Одно из возможных преимуществ ДТ — это цена на топливо, но соотношение цен отличается и сильно зависит от того в какой стране вы живете и где эксплуатируете авто.
Как работает двигатель?
Начнем с начального положения поршня – он находится вверху. В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. При этом всего лишь небольшая капля бензина поступает в емкость цилиндра. Это первый такт работы.
Во время второго такта поршень достигает самой нижней точки, при этом впускное отверстие закрывается, поршень начинает движение вверх, в результате чего топливная смесь сжимается, так как ей в закрытой камере некуда деваться. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.
Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.
На заключительном этапе деталь достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени, пока водитель не заглушит двигатель.
В результате взрыва бензина поршень движется вниз и толкает коленчатый вал. Тот раскручивается и передает нагрузки на колеса автомобиля. Именно так и выглядит устройство двигателя автомобиля.
Четырехтактный ДВС
1 цикл — это 4 такта
В первом такте выполняется впуск смеси. Топливо смешивается с воздухом. Поршень двигается к наивысшей точке. В камере сгорания создаётся область низкого давления — разрежение. Впускной клапан открывает отверстие в камере для подачи смеси. Коленвал начинает первый оборот.
Во втором такте смесь сжимается. Впускной клапан закрывается. Поршень, достигнув наивысшей точки, сжимает обогащённую топливную смесь. Коленвал завершает первый оборот.
Рабочий ход выполняется в третьем такте. Обогащённая смесь поджигается. В бензиновых двигателях поджигание производится электрической дугой от свечи. В дизельных — топливо воспламеняется самостоятельно в процессе сжатия. Облако расширяющихся газов заставляет поршень двигаться вниз. Начало второго оборота коленвала.
В четвёртом такте происходит выпуск. Открывается выпускной клапан. Газы выводятся в коллектор, а затем выбрасываются наружу. Поршень начинает двигаться вверх. Вал завершает второй оборот.
Таким образом, за 1 рабочий цикл этот двигатель совершает 4 такта, во время которых вал проворачивается дважды.
Видео: Принцип работы четырёхтактного двигателя
Принцип работы двигателя
Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива – тепловой энергии, освобождённой от сгорания топлива, в механическую.
При этом сам процесс преобразования энергии может отличаться.
Самый распространённый вариант такой:
- Поршень в цилиндре движется вниз.
- Открывается впускной клапан.
- В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
- Поршень поднимается.
- Выпускной клапан закрывается.
- Поршень сжимает воздух.
- Поршень доходит до верхней мертвой точки.
- Срабатывает свеча зажигания.
- Открывается выпускной клапан.
- Поршень начинает двигаться вверх.
- Выхлопные газы выдавливаются в выпускной коллектор.
Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само. При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления
Наглядно понять её помогает схема учебного модуля ELECTUDE.
При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE.
Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход
Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.
Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.
Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):
- Такт выпуска.
- Такт сжатия воздуха.
- Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
- Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха
4 такта образуют рабочий цикл.
При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.
Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?
- Поршень двигается снизу-вверх.
- В камеру сгорания поступает топливо.
- Поршень сжимает топливно-воздушную смесь.
- Возникает компрессия. (давление).
- Возникает искра.
- Топливо загорается.
- Поршень продвигается вниз.
- Открывается доступ к выпускному коллектору.
- Из цилиндра выходят продукты сгорания.
То есть первый такт в этом процессе – одновременный впуск и сжатие, второй – опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.
Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.
Важно! Кроме количества тактов есть отличия в механизме газообмена. В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска
В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.
У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).
Несколько слов в заключение
Такое устройство ДВС является практически совершенным. Но с каждым годом разрабатываются новые технологии, повышающие КПД работы мотора, осуществляется улучшение характеристик бензина. При правильном техническом обслуживании двигателя автомобиля он может работать десятилетиями. Некоторые успешные моторы японских и немецких концернов “пробегают” миллион километров и приходят в негодность исключительно из-за механического устаревания деталей и пар трения. Но многие двигатели даже после миллионного пробега успешно проходят капремонт и продолжают выполнять свое прямое предназначение.