Используемые контрольно-измерительные инструменты в металлообработке
Для регулирования и ведения ряда специфических, но необходимых процессов, во многих промышленных отраслях, включая металлообработку, используют контрольно-измерительный инструментарий. Его необходимость заключается в оперативном получении точных значений о материалах, которые обрабатываются, либо уже изготовленных деталях.
При помощи контрольно-измерительного инструмента специалисты могут получить следующие данные:
- Анализ показателей температуры в печах, где происходит плавление металлов, или же о другом оснащении.
- Контроль над процентом содержания в испарениях вредных веществ и тяжелых элементов.
- Химический состав газов.
- Мониторинг температуры и степени влажности воздуха в цехах или на складах.
- Осуществления контроля микровлажности газов и различных вредоносных технологических испарений.
- Уровень температурных значений во время переплавки или обработки металлического сырья.
- Тяжесть и плотность металлического сырья.
- Химическая составляющая металла и шлаков, которую проверяют в ходе переплавки или обработки металла.
Выделяют также категории используемых контрольно-измерительных инструментов. Это портативное и микропроцессорное оснащение микровлажности газов и испарений одноканального типа.
Большинство измерителей и регуляторов нужны для построения систем автоматического контроля, и управлением уровня температурных режимов в ряде технологических мероприятий. Они применяются не только в промышленном комплексе, но и в различных отраслях.
Отметим, что измерители микровлажности испарений и вырабатываемых газов необходимы для получения полной картины о безопасности определенной среды.
Такое специализированное оснащение позволяет вести правильный учет относительно того, насколько температуры могут повлиять на трансформацию показателей в процессе металлообработки или изготовления продукции в данной отрасли.
На стендах и салонах выставки «Металлообработка» представляют новинки оснащения и технологий для обработки изделий, трубопроводная арматура, методологии улучшения внешнего вида поверхностей, а также автоматизация производства и контрольно-измерительные инструменты, приборы для смежных отраслей.
К чему приводит неисправность?
Нельзя сказать, что поломка расходометра сразу приведет к критическим последствиям, но если игнорировать проблему, то продолжительная работа мотора на неправильно сформированной топливовоздушной смеси приведет к быстрому износу элементов цилиндропоршневой группы, а при наложении нескольких фактором может произойти детонация в двигателе и даже его «клин».
К примеру, если в мотор поступает богатая смесь, то в результате разжижения масла быстро перегреется двигатель.
Также неисправный MAF-sensor в значительной мере, по причине ухудшения чистоты выхлопа, влияет на уменьшение ресурса каталитического нейтрализатора, сажевого фильтра и выхлопной системы в целом.
Принцип работы
Работа системы направлена на регулирование температурного коэффициента внутри двигателя. Камазы имеют несложное строение системы охлаждения, состоящей из нескольких основных частей.
- Коленчатый вал двигателя оказывает воздействие на привод. Привод связан с водяным насосом, поэтому при собственном движении, он затрагивает водяной насос, заставляя его работать.
- Внутри полости водяного насоса находится крыльчатка. При вращении, крыльчатка вызывает разряжение механизмов.
- Разряженный антифриз поступает внутрь водяного насоса из нижнего бачка. Далее жидкость следует в специальную рубашку охлаждения блоков цилиндра, далее затрагиваются головки блоков, после чего механизм оказывает влияние на термостат.
- При нагреве менее семидесяти пяти градусов, антифриз вырабатывает цикл, минуя радиатор охлаждения, ведь он слишком холодный, чтобы еще более охлаждаться.
- Нагрев до девяносто пяти градусов заставляет открыться термостаты полностью, тогда охлаждающая жидкость проходит непосредственно через радиатор, охлаждаясь потоком воздуха внутри радиатора, который создает вентилятор охлаждения.
Система охлаждения поддерживает заданную корректную рабочую температуру. В различных моделях Камаза модификация СО может быть различной. Например, моторы серии 740 имеют жидкостное строение закрытого типа. Закрытый тип характеризуется атмосферным сообщением циркулятивных клапанов через паровоздушные клапаны, остальные типы взаимодействуют напрямую. Закрытый тип имеет ряд преимуществ, основным из которых является возможность повышения температуры кипения охлаждающей жидкости при практически полном устранении потерь через выкипание. Иными словами, нагретая жидкость будет оставаться полностью внутри узла максимальное количество циклов, ведь ей просто некуда деваться через закрытый тип строения.
Система охлаждения включает радиатор. Его задача — быстрое интенсивное охлаждение. Различные типы Камазов также оснащены различными радиаторами. Например, модель 740 имеет трубчато-пластичный тип, основными составляющими которого являются сердцевины верхних, нижних бачков. Сердцевинами считаются ряды отдельных трубок с поперечными горизонтальными пластинами, придающими радиатору жесткость, увеличивающими поверхность охлаждения. Трубки соединяют бачки между собой. Нижний бачок соединен прорезиненным плотным шлангом с полостью охлаждения двигателя, нижний оснащен краном впуска охлаждающей жидкости, патрубков, соединяющим водяной насос. Заполнение радиатора осуществляется только путем заполнения расширительного бачка, ведь в Камазах отсутствует заливная горловина. Бачок расположен с правой стороны двигателя, при нагреве жидкости внутри бачка компенсируется ее количество, поэтому при грамотной работе нагруженного узла нехватка жидкости совершенно невозможна. Сам бачок оснащен двумя горловинами, через которые вставляется паровоздушный клапан, либо происходит заполнение рабочей жидкостью.
Что отслеживает датчик вращений и положения коленвала
Детектор оборотов двигателя передает на ЭБУ следующее:
- объем впрыскиваемого топлива в конкретный момент;
- кода появляется сам момент впрыска;
- оптимальное время для активации клапана адсорбера, длительность его работы;
- момент и угол опережения зажигания, угол поворота КВ.
ДПКВ — это единственный датчик, выход из строя которого, среди прочих схожих для неполадок сенсоров последствий, приведет к полной остановки двигателя. Именно он позволяет системе определить, когда на свечах зажигания создавать искровой заряд.
Где находится датчик оборотов
Детектор оборотов, он же индукционный измеритель расположен, как правило, над маркерным (реперным) колесом, зубчики которого выполняют для него роль сигнализатора. Установлен в таких местах:
- маховик;
- коленвал, внутри сегмента цилиндров (часто так у Ford, Opel);
- с фронта моторной части на КВ, со шкивом привода дополнительных узлов (Jaguar, BMW, ВАЗ и так далее).
Маркерные выступы реперного колеса могут предназначаться только для измерения оборотов ДВС (лучший вариант), а также их роль могут выполнять выступы на стартерном узле (Audi, Volvo). У некоторых моделей измеритель оборотов заменяет сенсор Холла, тогда обычно устройство находится вблизи распредвала.
Место сенсора синхронизации неудобное, поэтому он имеет длинный (до 70 см) кабель с разъемом, само устройство крепится на кронштейне. Стандартное его место — около шкива привода генератора.
Сложности с идентификацией
Приведем пример, как владельцем Audi 100 2.6 описана вариация разных сенсоров. Измеритель оборотов тут обозначен как G28, но также есть отдельный детектор для КВ (G4):
Ниже на рисунке упоминаемый отдельный датчик G4, а соотношение по месту его расположения к G28 показано на фото выше:
Учитывая сказанное, для начала желательно ознакомиться со схемой силовой системы по спецификации конкретной модели машины.
Конструкция и общий принцип работы автомобильного сенсора оборотов
При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.
На Toyota:
Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).
Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:
- Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
- Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
- Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
- При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
- Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.
Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.
Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.
Ниже рассмотрим виды ДПКВ и их нюансы.
Перечень основных
В состав системы управления работой ДВС входит несколько сенсоров, расположение и принцип их функционирования зависят от производителя. Корректная работа мотора и нормативный расход топлива возможны только в случае исправных чувствительных элементов. Неисправность сенсоров приводит к падению мощности и росту расхода топлива. Помимо поломки датчиков, возможны обрывы жгутов проводки или окисление контактов внутри штекеров из-за проникновения конденсата и дорожных реагентов.
ДМРВ
На входе в дроссельный узел располагается сенсор, определяющий массовый расход воздуха двигателем. Причиной выхода из строя является загрязнение элемента, расположенного внутри корпуса.
При завышении показаний наблюдаются плавающие обороты холостого хода, мотор может глохнуть, а при запуске возникают затруднения (вне зависимости от температуры антифриза). При занижении массового расхода агрегат не развивает полной мощности и сжигает на 20-25% больше горючего.
ДПДЗ
Сенсор определяет положение заслонки в дроссельном узле и отвечает за подачу топлива. При поломке возникают провалы при резком или плавном нажатии на педаль акселератора, могут плавать обороты холостого хода, а при разгоне автомобиля наблюдаются рывки.
Необходимо приобретать оригинальную запасную деталь, поскольку подделки или бюджетные сенсоры быстро выходят из строя из-за вибрационных нагрузок и постоянного перемещения заслонки.
ДТОЖ
В контуре охлаждения имеется сенсор, определяющий температуру антифриза и регулирующий состав смеси. На холодном моторе требуется подача дополнительной порции горючего, которая одновременно ограничивается лямбда-зондом в нейтрализаторе.
При поломке элемента возможны постоянная работа вентиляторов на радиаторе, проблемы с запуском горячего силового агрегата и повышенный расход топлива. Диагностика показывает ошибки, связанные с обрывом цепей или чрезмерно низким либо высоким уровнем сигнала.
ДД
Сенсор определяет момент детонационного сгорания и корректирует опережение зажигания. Изделия разделяют на резонансные и широкополосные, отличающиеся алгоритмами работы.
В случае поломки сенсора плавают прогревочные обороты, мотор не развивает мощности, наблюдается рост расхода топлива.
ДК
На машинах с каталитическим нейтрализатором имеются первичный и вторичный сенсоры концентрации кислорода. Чувствительные элементы определяют состав выхлопных газов и корректируют состав смеси. При повреждении возрастает расход горючего, богатая смесь догорает в полости нейтрализатора и перегревает керамические соты.
Разрушенный наполнитель препятствует выходу газов в атмосферу, а некорректный сигнал от сенсоров приводит к дополнительному обогащению смеси.
ДПКВ
Датчик определяет положение коленчатого вала и является одним из основных элементов системы управления работой мотора. ДПКВ расположен около шкива и считывает информацию от вращающегося диска, некоторые компании ставят элемент около маховика (например, на агрегатах AEB от Audi). При поломке запуск мотора невозможен, в комбинации приборов горит лампа Check Engine. Силовые установки ряда производителей при выходе из строя ДПКВ переходят в аварийный режим работы по фиксированной картографии с ограничением частоты вращения вала на уровне 3000-4000 об/мин.
ДС
Сенсор определяет скорость движения автомобиля, располагается на картере коробки передач напротив вторичного вала. Сигнал передается к спидометру и учитывается блоком управления мотором. При поломке или окислении наблюдаются провалы оборотов в момент разгона либо снижение частоты вращения коленчатого вала в режиме холостого хода.
На части машин импортного производства при неисправном ДС блокируется пуск мотора (например, на продукции бренда Chevrolet).
ДФ
Изделие определяет положение распределительного вала, управляя последовательностью работы форсунок впрыска топлива. При поломке увеличивается расход горючего из-за одновременной работы 2 распылителей. Датчик фазы используется не на всех моторах. Например, завод ВАЗ стал использовать систему отслеживания положения распределительного вала на 8-клапанных агрегатах только после 2005 г. Двигатели с 16-клапанной схемой газораспределения изначально комплектовались ДФ, расположенным на головке блока.
На положение дроссельной заслонки
Этот датчик предназначен для расчета контроллером уровня открытия дроссельной заслонки. Его устанавливает на ось дросселя. При нажатии на педаль акселератора он поворачивается вместе с дросселем. По сути это переменный резистор, который в зависимости от угла поворота меняет уровень напряжения подаваемого на контроллер.
Проверяется таким образом. Включается зажигание, и замеряется напряжение на выводах датчика. Оно должно колебаться от 0 В при стартовом положении, до 12 В при максимальном. Также можно измерить сопротивление, но это не обязательно. Если напряжение отсутствует, либо растет нестабильно, то ДПДЗ неисправен, необходимо его поменять.
Индуктивные датчики для контроля частоты вращения приводного барабана конвейера
В случае провисания или обрыва конвейерной ленты, нарушается технологический процесс. Этого можно избежать, используя индуктивный датчик контроля минимальной скорости. После установки датчика на приводной барабан конвейера, Ваша система автоматически отслеживает частоту его оборотов, тем самым держит под контролем состояние ленты транспортера. В случае неисправности (снижении частоты ниже установленного минимума) на устройство управления будет подан сигнал о неполадках в работе системы.
С помощью подстроечного резистора на датчике устанавливается минимальное пороговое значение частоты вращения приводного барабана (скорости движения ленты). Для того, чтобы датчик не выдал ложный сигнал по причине инерции конвейера, в нем предусмотрена величина задержки срабатывания при первоначальном запуске двигателя для разгона. В типовых датчиках она достигает 9 секунд, при необходимости — регулируется. Диапазон регулируемых частот: 0,1…2,5 Гц; 2…50 Гц
Вариант успешного применения датчика контроля минимальной скорости: контроль исправности грохота. Датчик запрограммирован на определенную частоту прохождения грохота мимо чувствительного элемента. И в случае, если частота меняется, датчик сигнализирует о сбое в работе грохота (из-за обрыва троса, выхода из строя двигателя или другой возможной причины).
Гарантия — 24 месяца
Датчик давления топлива (ДДТ)
Применяется для передачи в ЭБУ информации о давлении в топливной системе. ДДТ монтируются на разные типы моторов, работающие как на бензине, так и на дизеле (с Common Rail). Место монтажа — топливная рампа силового агрегата.
Задача ДДТ состоит в поддержании давления на необходимом уровне и обеспечение нормальной работоспособности силового агрегата. При этом обеспечивается нормальная мощность и уровень шума. Иногда в машине ставится два датчика — высокого / низкого давления.
ДДТ имеет простое устройство:
- сенсорный компонент (мембрана из металла);
- тензорезистор (элемент, который деформируясь приводит к изменению своего электрического сопротивления).
Чем больше толщина мембранной части, тем более высокое давление способен выдержать ДДТ.
Что касается тензорезисторов, они нужны для преобразования механических действий в электрическую команду. В нормальном режиме на выходе формируется напряжение от 0 до 80 мВ.
При превышении этого параметра срабатывает специальный клапан в топливной системе, обеспечивающий нормализацию давления.
Поломка ДДТ проявляет себя следующими признаками:
- зажигание лампы Check Engine на «приборке» (P0191 в сканере);
- перерасход горючего;
- трудности с запуском силового агрегата;
- потеря мощности мотора;
- отключение на ХХ;
- течь горючего из топливных шлангов / рампы.
При появлении любого из указанных симптомов желательно проверить ЭБУ на наличие ошибок.
К причинам поломки ДДТ стоит отнести:
- повреждение внутренних элементов датчика;
- неисправность проводки;
- загрязнение сетки на регуляторе из-за попадания мусора в горючее, к примеру, когда топливный фильтр не справился с работой;
- износ / клин запирающего элемента внутри регулятора давления;
- неполное прилегание кожуха ДДТ к рейке;
- поломка ЭБУ.
Для проверки старых датчиков достаточно было пережать на некоторое время «обратку» подачи горючего на холодном моторе. Если мотор перестает троить, значит, проблем в ДДТ.
На новых устройствах нужно измерить напряжение, которое должно быт около 5 В.
Также стоит проверить напряжение между «минусом» фишки (черный провод) и «плюсом» АКБ (красный провод). Если напряжение около 12 В, значит, ДДТ исправен. При проверке манометром давление должно быть на уровне около 2,5-3 атм.
Датчик на массовый расход воздуха
Этот датчик контролирует и позволяет нормализовать поступление воздуха в топливную смесь. Признаками его неисправности являются следующие проблемы:
- Нестабильные обороты;
- Проблемы с заводом теплого двигателя;
- Снижение мощности.
Проверка этого датчика производится по разному. Самым простым из них является отключение ДМРВ и поездка без него. Если негативные моменты пропали, то скорее всего причина именно в датчике. Также отказ датчика может быть спровоцирован некачественной прошивкой. Для этого под упор заслонки дросселя помещают пластинку толщиной 1 мм. При этом обороты немного должны увеличиться. После снимают фишку с интересующего нас датчика. Если двигатель продолжил работать, причина в «кривой» прошивке.
Что отслеживает датчик вращений и положения коленвала
Детектор оборотов двигателя передает на ЭБУ следующее:
- объем впрыскиваемого топлива в конкретный момент;
- кода появляется сам момент впрыска;
- оптимальное время для активации клапана адсорбера, длительность его работы;
- момент и угол опережения зажигания, угол поворота КВ.
ДПКВ — это единственный датчик, выход из строя которого, среди прочих схожих для неполадок сенсоров последствий, приведет к полной остановки двигателя. Именно он позволяет системе определить, когда на свечах зажигания создавать искровой заряд.
Где находится датчик оборотов
Детектор оборотов, он же индукционный измеритель расположен, как правило, над маркерным (реперным) колесом, зубчики которого выполняют для него роль сигнализатора. Установлен в таких местах:
- маховик;
- коленвал, внутри сегмента цилиндров (часто так у Ford, Opel);
- с фронта моторной части на КВ, со шкивом привода дополнительных узлов (Jaguar, BMW, ВАЗ и так далее).
Маркерные выступы реперного колеса могут предназначаться только для измерения оборотов ДВС (лучший вариант), а также их роль могут выполнять выступы на стартерном узле (Audi, Volvo). У некоторых моделей измеритель оборотов заменяет сенсор Холла, тогда обычно устройство находится вблизи распредвала.
Место сенсора синхронизации неудобное, поэтому он имеет длинный (до 70 см) кабель с разъемом, само устройство крепится на кронштейне. Стандартное его место — около шкива привода генератора.
Сложности с идентификацией
Приведем пример, как владельцем Audi 100 2.6 описана вариация разных сенсоров. Измеритель оборотов тут обозначен как G28, но также есть отдельный детектор для КВ (G4):
Ниже на рисунке упоминаемый отдельный датчик G4, а соотношение по месту его расположения к G28 показано на фото выше:
Учитывая сказанное, для начала желательно ознакомиться со схемой силовой системы по спецификации конкретной модели машины.
Конструкция и общий принцип работы автомобильного сенсора оборотов
При рассмотрении вопроса, какой датчик отвечает за обороты двигателя во всех аспектах, надо отметить, что это группа сенсоров. А именно: холостого хода (ДХХ), дроссельной заслонки (ДПДЗ), распредвала (ДПРВ), расхода воздуха (ДМРВ), рециркуляции газов. Но именно считает частоту оборотов для нормальной работы системы зажигания ДПКВ. В целом признаки поломки общие для него и перечисленных детекторов, но есть характерный только для измерителя синхронизации признак: часто именно при его поломке автомобиль вообще не заводится.
На Toyota:
Алгоритм функционирования ДПКВ в своей основе схож для всех его типов. Основывается на мониторинге изменений в создаваемой им же среде (магнитополе, индукция, оптические явления), которые провоцирует специальная ответная зубчатая часть коленвала (диск с выступами, реперный, синхронизации).
Рассмотрим этапы работы автомобильного ДЧВ в несколько обобщенном виде:
- Коленвал имеет специальный зубчатый (реперный) диск. На месте двух зубцов (стартового, нулевого) пустое место, без них выступов 58, они расположены по окружности через каждые 6°.
- Колесо крутится, выступы проходят через магнитное поле, оптические или другие импульсы, посылающиеся сенсором в зависимости от его типа, изменяют их.
- Прибор отслеживает указанные модификации среды, передает их на ЭБУ машины.
- При прохождении детектора мимо участка без двух зубцов характер импульсов фиксируется как сигнал, уведомляющий о начальном положении КВ. Таким образом сенсор различает полный оборот.
- Компьютер электронного управления системой автомобиля на основании показателей от ДПКВ узнает о размещении коленвала и все необходимые данные, производит вычисления, направляет сигналы в исполнительные узлы, работа системы зажигания, впрыска корректируется, мотор работает стабильно.
Наиболее ярко охарактеризовать работу датчика синхронизации можно на примере индуктивной его разновидности. При вращении сигнального колеса (во время работы ДВС) его выступы задевают магнитное поле ДПКВ. Создаются периодические импульсы напряжения, характеризующие частоту движения и положение КВ, поступающие на контроллер ЭБУ, который и рассчитывает момент для сработки модуля зажигания и форсунок.
Надо сказать, что такой алгоритм характерный в своей основе для всех типов датчиков положения коленвала: зубчики изменяют чувствительную среду, создающуюся ДПКВ, что и отслеживает через него ЭБУ.
Ниже рассмотрим виды ДПКВ и их нюансы.
Какие датчики могут располагаться в двигателе
Разные моторы могут иметь различное количество датчиков, исправность которых может по-разному влиять на запуск и работу силового агрегата. Если смотреть обобщенно, то любой индикатор, может повлиять на хороший пуск движка. Но, если разбирать по частям, то каждый датчик имеет свое предназначение, а поэтому не все могут повлиять на запуск сердца автомобиля. Рассмотрим, каждый датчик по отдельности и его предназначение в работе автомобиля.
Итак, начнем с самого начала. Автолюбитель залил горючее в автомобиль. На многих современных автомобилях устанавливают датчик качества топлива. Особенно такие датчики можно встретить на немецких и американских автомобилях, которые не адаптированные для нашего региона.
При поступлении плохого горючего в топливную систему, анализатор определяет, насколько качественное топливо попало в машину. Если была залита «бодяга», то мотор может начать заводится с трудом или вовсе не заведется. Располагается такое анализатор может перед или после топливного фильтра.
Второй индикатор по значению, который может повлиять на запуск мотора — датчик температуры охлаждающей жидкости. Именно неисправность этого индикатора может привести к тому, что силовой агрегат будет долго заводиться. Это связано с тем, что электронный блок управления думает, что мотор нагретый, и впрыскивает недостаточное количество топлива. Обычно, этот датчик больше всех подвержен поломкам.
Следующий индикатор, который непосредственно влияет на нормальный запуск движка — датчик регулятора холостого хода. Он определяет, какое количество топливно-воздушной смеси необходимо для нормальной работы мотора на холостом ходу и во время пуска мотора.
Датчик детонации также влияет на пуск агрегата. Обычно, он установлен в верхней части двигателя и улавливает вибрации издаваемые двигателем. В случае, если датчик подает в ЭБУ сигнал о том, что детонационные действия могут навредить мотору, блок управления блокирует подачу воздушно-топливной смеси и искру. При этом мотор может первый раз провернуть несколько раз коленчатый, а потом заглохнуть и вовсе больше не завестись.
Датчик положения дроссельной заслонки (ДПДЗ). Этот индикатор контролирует положение дросселя, а также процесс регулировки его для нагнетания воздуха в камеры сгорания. ДПДЗ неразрывно связан с датчиком массового расхода воздуха.
Датчик положения коленчатого вала. Он вычисляет положение коленвала относительно положения цилиндров. При выходе со строя, блок управления получает стабильные данные и останавливает работу мотора принудительно.
Датчик кислорода влияет непосредственно на образование воздушно-топливной смеси, а также на расход горючего. Он измеряет концентрацию кислорода в выпускных газах, чем контролирует непосредственно подачу топлива в камеры сгорания. Разность показаний индикатора изменяется приблизительно от 0,1 В (высокое содержание кислорода — бедная смесь) до 0,9 В (мало кислорода — богатая смесь).
А задней части головки блока цилиндров расположен датчик фаз. Он определяет положение 1-го поршня в верхней мертвой точке. Разработан и основан на действие датчика Холла. Этот датчик регулирует фазы газораспределения, а именно открывание и закрывание выпускных клапанов.
Еще одним представителем воздушных индикаторов является датчик массового расхода воздуха (ДМВР). Расположен он перед дроссельной заслонкой и при помощи него контролируется количество воздуха, который поступает в камеру сгорания.
Этот индикатор анализирует положение дроссельной заслонки для подачи и регулировки количества воздуха подаваемого в цилиндры. Обычно, при выходе датчика со строя, количество нагнетаемого воздуха для разных режимов работы двигателя не меняется, и силовой агрегат попросту задыхается при добавлении количества топлива и оборотов.
Дополнительными датчиками могут считаться — датчик температуры охлаждающей жидкости расположенный на радиаторе и датчик диагностики электроники. Эти индикаторы устанавливаются на автомобилях с так называемой «тяжелой электроникой», где все процессы управления мотором проводятся бортовым компьютером.
Неотъемлемой частью датчик управления запуском двигателя является блок управления силовым агрегатом. Именно он контролирует все процессы, происходящие в движке, а также регулирует настройки для оптимального пуска. Выход со строя этого элемента повлечет за собой то, что мотор попросту не заведется.
Индуктивные датчики скорости вращения
Конструкция и принцип действия Датчик монтируется прямо напротив ферромагнитного зубчатого колеса (поз. 7) с определенным воздушным зазором. Он имеет сердечник из магнитомягкой стали (полюсный контактный штифт, поз. 4) с обмоткой (5). Полюсный контактный штифт соединен с постоянным магнитом (1). Магнитное поле распространяется через полюсный контактный штифт, проходя в зубчатое колесо. Магнитный поток, проходящий через катушку, зависит от того, попадает ли расположение датчика напротив впадины или зуба колеса. Зубец соединяет в пучок магнитный поток рассеяния, исходящий от магнита. Через катушку происходит усиление сетевого потока. Впадина, наоборот, ослабляет магнитный поток. Эти изменения магнитного потока при вращении зубчатого колеса индуцируют в катушке синусоидальное выходное напряжение, пропорциональное скорости изменения и числу оборотов двигателя. Амплитуда переменного напряжения интенсивно возрастает с увеличением числа оборотов (несколько мВ… > 100 В). Достаточная амплитуда присутствует, начиная с минимального числа оборотов от 30 в минуту.