Последствия детонации двигателя
Для осуществления разгона транспортного средства, водитель резко вдавливает педаль газа. При попадании топлива в условия с повышенным давлением, сверхвысокими температурами, происходит воспламенение. Внутри камеры генерируется дополнительное давление, создается взрывная волна с возрастающей амплитудой, возникает цепная реакция, не поддающаяся контролю, коленвал вращается с огромной скоростью.
Детонация приносит огромные разрушения элементам двигателя:
- Срываются и обламываются кромки поршней.
- Нарушается целостность цилиндров, разрушаются стенки.
- Прокладка головки ГБЦ полностью разрывается.
- Датчики дроссельные выходят из строя.
В отличие от детонации, при нормальном функционировании топливо равномерно сгорает и передает энергию движения на поршни, затем на коленчатый вал и т.д.
Полезные советы и рекомендации опытных автомобилистов
Формируемая при взрывном сгорании ударная волна изменяет тональность работы двигателя. Водителю необходимо научиться улавливать появление посторонних звуков, указывающих на некорректную работу силового агрегата. Следует учитывать, что в процессе движения не допускается изменение звучания мотора. Любой посторонний шум косвенно указывает на неисправность агрегата.
Если детонация появилась после заправки автомобиля, то необходимо долить в бак бензин с повышенным октановым числом. В случае, когда двигатель рассчитан на топливо типа А-98 или выше, доливка не поможет. Необходимо слить горючее с промывкой рампы и форсунок. При длительной эксплуатации машины в условиях городских пробок на деталях поршневой группы оседает нагар. Для устранения отложений необходимо совершить поездку протяженностью 50-70 км по загородному шоссе с максимально допустимой скоростью.
Способы устранения
Способ 1
Изначально необходимо обратить внимание на применяемое горючее. Многие владельцы автомобилей игнорируют предписания производителя, и в целях экономии заливают более дешевое топливо
Не стоит повторять данную ошибку, ведь почти всегда цена горючего прямо пропорциональна его качеству, то есть чем оно дороже, тем выше его качественные характеристики. Экономия в данном случае не оправдана: приобретя недорогое топливо и сохранив несколько десятков рублей, придется отдать несколько тысяч за ремонт силового оборудования. Также необходимо помнить, что октановое число заливаемого бензина должно быть аналогичным октановому числу, рекомендованному производителем. Если делать все по правилам, можно будет забыть о детонации.
Способ 2. Следует отрегулировать угол зажигания. Досрочное зажигание нередко становится причиной перегрева элементов, что чревато детонацией. Если угол зажигания не соответствует норме, силовое оборудование может детонировать даже при выключенном моторе.
Способ 3. Необходимо произвести проверку свечей зажигания. Если свечи неисправны, их стоит заменить в максимально короткий срок.
Способ 4. Если эксплуатация машины в основном осуществляется с небольшой нагрузкой, то в камерах сгорания накапливается нагар. Это одна из наиболее распространенных причин, из-за которых возникает детонация при глушении двигателя
Чтобы предотвратить проблему, очень важно время от времени давать существенную нагрузку на силовое оборудование, к примеру, двигаться с повышенными оборотами при высокой передаче
Способ 5. Когда при детонации из выхлопной трубы автомобиля идет дым зеленого или черного цвета, происходит выброс алюминия. Это говорит о том, что поршневая система машины находится на стадии разрушения или уже пришла в негодность. Единственное решение – полная замена поршневой системы.
Способ 6. Если с зажиганием все в порядке, и оно происходит своевременно, если хозяин автомобиля заливает только высококлассное топливо с подходящим октановым числом, если свечи зажигания находятся в исправном состоянии, а детонация двигателя на холостых оборотах продолжает проявляться, причиной является перегрев. Именно поэтому одним из наиболее распространенных методов устранения неполадок считается снижение «жара» в камере сгорания. Чаще всего применяется интеркулер, однако можно использовать обычную воду. Охладитель собирает горячий воздух и направляет его сквозь воздушные охладители. Такая манипуляция способствует уменьшению температуры.
Также причина перегрева может крыться в термосе. Произведя проверку и определив неисправность данного элемента, следует в обязательном порядке обратиться в сервис – самостоятельно исправить ситуацию не удастся.
В завершение стоит сказать, что детонация несет опасность для силового оборудования любого типа. Некачественное горючее – основная (но не единственная) причина ее возникновения. При проявлении первых признаков детонации следует максимально быстро определить и ликвидировать причины, которые вызвали самопроизвольное возгорание топлива. Игнорирование данного явления чревато дорогими ремонтными работами.
Видео о причинах детонации двигателя:
Источник
Признаки детонации
На слух детонация в двс определяется в виде тонкого металлического стука. Обычно она сопровождается ощутимым уменьшением мощности, неустойчивой работой мотора, его перегревом, временным выбросом черного дыма. Детонация как явление представляет собой самовоспламенение рабочей смеси в виде взрывной волны. Чаще всего она происходит при резком ускорении или езде под горку, при появлении нагрузки, когда водитель нажимает педаль в пол.
Нормальная работа двигателя
Возникновение очагов самоспламенения
Высокие температуры и давление воздействуют на богатую смесь в точках ее не сгорания появляются различные активные вещества. Объем их достигает некоторой критической величины. Они вступают в реакцию окисления и происходит самовоспламенение топливно-воздушной смеси. В точке взрыва резко повышается температура, а взрывная волна распространяется с очень большой скоростью. Ударяется о стенки цилиндров. Новые очаги провоцируют самовоспламенения. Поэтому в агрегате появляется множество взрывных волн. Они вызывают его вибрацию. Поэтому характерный стук является является следствием многократных ударов взрывных волн о стенки цилиндров.
Срок жизни отдельной взрывной волны составляет тысячные доли секунды. За это время она успевает нанести огромный ущерб. При ударе о стенки цилиндров, она разбивает масляную пленку. Как следствие, детали подвергаются трению «на сухую» и от коррозионного износа под влиянием продуктов сгорания. Кроме того, давление взрывной волны достигает огромных значений, что постепенно приводит к разрушению деталей. Также детонация провоцирует перегрев агрегата, который также очень губителен. В совокупности все эти негативные факторы очень сильно влияют на моторесурс двигателя.
Основные причины детонации двигателя
Факторами при которых появляется детонация в ДВС, являются условия благоприятные для быстрых окислительных процессов в камере сгорания.
1. Рабочая смесь в соотношении 9:1. Она способствует формированию в дальних уголках камеры сгорания очагов окислительных реакций.
2. Увеличение угла опережения зажигания. Пик максимума давления сдвигается к верхней мертвой точке. Это способствует увеличению давления в камере сгорания и появлению детонации.
3. Невысокое октановой число бензина. Дело в том, что активность горючего к окислению возрастает со снижением октанового числа.
4. Возрастание степени сжатия. Потому что моторы с высокой степенью сжатия должны работать на горючем с высоким октановым числом.
5. Конструкция камеры сгорания выполнена неудачно. Поэтому происходит плохой отвод тепла, слишком большой диаметр цилиндров и пр.
Методы борьбы с детонацией
Существуют методы, борьбы с детонацией. Все они основаны на ускорении догорания несгоревших частей в основном пламени двигателя. В следствии этого возможно также замедление окислительных реакций.
Первый фактор – увеличение оборотов. Потому что время прохождения окислительных реакций значительно сокращается и вероятность самовоспламенения уменьшается. Второй фактор – вращение (турбулизация) смеси в камере сгорания. Так как фронт пламени распространяется и детонация не наступает. Третий фактор – снижение пути фронта пламени. Практически это решается установкой двух свечей на цилиндр или меньшим диаметром последнего.
Для борьбы с детонацией авто производители разрабатывают различные конструкции камер сгорания. Например — форкамерный-факельная система зажигания автомобиля ГАЗ-3102. Повсеместное применение электроники в автомобилестроении, позволило свести к минимуму это явление. Ведь датчики постоянно следят за ситуацией внутри цилиндров и при появлении первых признаков детонации изменяют состав рабочей смеси и угол опережения зажигания. Кроме того, созданы современные двигатели, работающие на сверх бедных смесях (соотношение 40-50:1), что также исключает детонацию.
Основные причины детонации зависят от конкретных условий при которых детонация в двс возникает. Задача определить что именно не хватает двигателю для нормальной работы.
Причины детонации двигателя
А источником всех бед, связанных с детонацией двигателя, есть прокладка между рулем и сиденьем. Сам водитель, заливая в бак низкооктановое месиво вместо положенного хорошего бензина, подписывает двигателю смертный приговор. Низкое октановое число бензина как раз и стает причиной детонации. Но бывают случаи, когда детонация просто проходит легкой дрожью по двигателю и исчезает. Ее даже не всегда удается заметить. Такое явление чаще всего возникает на дефорсированных двигателях и моторах небольшого объема — это ВАЗ 2114, 2110, 2109, 2108, двигатели старых конструкций, в системе управления которыми нет датчика детонации, ВАЗ 2101-2107, старые иномарки. Они-то и страдают от отечественного топлива непонятного состава в первую очередь. Попробуй объяснить Тойоте Королла 87-го года выпуска, что тот бензин, который плещется в ее баке, номинально имея октановое число 98, по факту недотягивает и до 95-го. А дело-то в малом. В степени сжатия.
Прокладка между рулем и сиденьем является причиной неприятностей с детонацией двигателя
Еще лет 50 назад Москвичи и Волги были практически всеядными и могли работать чуть ли не на керосине. Все объяснялось малой степенью сжатия в цилиндрах и низким уровнем форсировки. Степень сжатия у этих динозавров не превышала 6-7 единиц. Поэтому при необходимости они заводились и на керосине, разбавленном водой. Позже, когда с подачи итальянцев по всей стране начали меняться автомобильные стандарты, только появлялся в продаже невиданный бензин АИ 93. Благодаря Фиат 124 с его степенью сжатия 8,8, автомобилисты были вынуждены знакомиться с высокооктановым бензином. А те, кто лили в ВАЗ 2101 старый 76-й, незамедлительно меняли прогоревшие прокладки блоков цилиндров и поршневую с выгоревшими до дыр днищами поршней. Одно время пытались бороться с детонацией, искусственно разжимая двигатель. То есть уменьшали степень сжатия установкой более толстой прокладки головки, а заодно хотели сэкономить на более дешевом бензине. Но цена такой экономии — капремонт и низкий ресурс, поскольку двигатель не обманешь и он все равно съест столько топлива для достижения паспортной мощности, сколько этого требует физический процесс энергоемкости смеси. Современный двигатель имеет степень сжатия от 9 до 11 единиц и применение некачественного топлива очень быстро отучит экономить на бензине владельцев иномарок, особенно с тщательно заглушенным салоном. Но это не единственная причина появления детoнации в двигателе. Можно пунктирно очертить еще несколько:
- Пропорция рабочей смеси. В определенных условиях, когда смесь переобогащена бензином, соотношение воздух/бензин примерно около 9.0. При малейшем увеличении нормативного давления в камере происходит детонация, это та самая, детонация, которая возникает незаметно, как микроинсульт, но действует разрушительно и беспощадно.
- Значение угла опережения зажигания. Если сдвинуть пик возгорания смеси в сторону увеличения угла опережения, мы получим идеальные условия для появления детонации. А если к этому прибавить еще плохое топливо, подвинуть момент воспламенения смеси ближе к ВМТ, детонация неизбежна. Опять-таки в комплексе с низким качеством бензина.
- Степень сжатия. О ней уже говорили, просто вспомним, что это отношение объемов цилиндра и камеры сгорания. Больше степень сжатия — выше градус горения, давление, при котором происходит процесс воспламенения.
- Конструктивные просчеты в камере сгорания. Здесь мы бессильны что-либо предпринять радикально, но знать о конструкционных недостатках, которые ведут к явлению детонации в моторе, нужно.
https://youtube.com/watch?v=Zy1RYH4xUuM
В большинстве случаев это:
- неудовлетворительные условия охлаждения удаленных от места искрообразования участков;
- медленное догорание остатков смеси в силу конструктивных особенностей камеры;
- неудовлетворительный тепловой баланс поршня — утолщения днища ближе к центру увеличивает путь для отвода тепла;
- крупный диаметр цилиндра тоже не способствует охлаждению и создает новые участки на удалении от электродов свечей.
Детонация
Давление, возникающее при детонации ( в стеклянной трубке. |
Детонация может протекать только при определенном составе газовоздушной смеси. Так, смесь водорода с воздухом детонирует только при содержании водорода в смеси в пределах 27 — 35 %, а смесь ацетилена с воздухом — при содержании 6 5 — 15 % ацетилена.
Детонация может протекать только при определенном составе газовоздушной смеси.
Детонация — искажения, обусловленные непостоянством скорости движения звуконосителя при записи или при воспроизведении.
Детонация вызывает резкое уменьшение мощности и экономичности двигателя и действует разрушительно на ряд основных деталей. Борьба с детонацией прежде всего является борьбой за рациональную организацию сгорания топлива, в которой проблема подбора топлива играет решающую роль в качестве одного из наиболее эффективных методов уменьшения склонности двигателя к детонации. Чрезвычайная сложность явления детонации обусловила то, что, несмотря на огромное число исследований, посвященных этому явлению, природа его до сих пор еще не вполне установлена, как равно еще. Несомненно, что детонация представляет собою особый характер протекания сгорания в двигателе, сопровождающегося очень быстрым воспламенением горючей смеси и связанной с этим большой скоростью выделения тепловой энергии. Переход нормального сгорания в детонацию может быть связан не только с громадным увеличением скорости протекания реакций, но также и с изменением характера реакций сгорания. Процесс детонации включает одновременно достаточно быстрое протекание реакций, обусловливающих бурное выделение энергии, и связанные с этим физические явления, влияющие как на состояние рабочего тела, так и на протекание самих исходных реакций.
Адиабата. точка Жуге. а — угол накло на прямой Михельсона. |
Детонация представляет собой процесс распространения в газе, жидкости или твердом теле экзотермического химического превращения в виде узкой зоны, движущейся относительно исходного вещества со скоростью, превышающей скорость звука. Эта зона названа детонационной волной. Быстрая реакция в зоне возбуждается не вследствие передачи тепла от прореагировавшего слоя вещества к непрореагировавшему, а путем ударного сжатия и соответствующего нагревания исходной среды, вызванного давлением продуктов реакции. Поэтому детонация возможна только в таких средах, продукты реакции которых занимают больший объем, чем исходное вещество.
Детонация вызывается самовоспламенением последней части рабочего заряда, до которой фронт пламени от свечи доходит в последнюю очередь.
Детонация в бензиновых двигателях проявляется наиболее часто в виде металлического звука различной силы, сопровождаемого перегревом и потерей мощности. Он возникает при медленном движении по плохим дорогам в жаркую погоду, при быстром разгоне или если велико опережение вспышки.
Детонация — химическое превращение взрывчатого вещества, сопровождающееся выделением энергии и распространяющееся в виде волны от одного слоя вещества к другому со сверхзвуковой скоростью.
Детонация — это быстрое завершение процесса сгорания в цилиндрах двигателя в результате самовоспламенения части рабочей смеси перед фронтом пламени, приводящее к появлению ударных волн, которые стимулируют сгорание всей оставшейся рабочей смеси со сверхзвуковой скоростью.
Детонация — это явление в двигателях, сопровождающееся стуками, скачкообразным изменением давления в цилиндрах, и обусловленное запаздыванием воспламенения топлива.
Детонация вызывается не только искрой, сю и сильными ударами.
Схема устройства водяного охлаждения цилиндров двигателя автомобиля. А — цилиндры, В — шатуны. Вода циркулирует, омывая цилиндры. Движение воды вызывается нагреванием ее вблизи цилиндров и охлаждением в радиаторе R. Это — система медных трубок, по которым протекает вода. В радиаторе вода охлаждается потоком воздуха, засасываемого при движении пропеллером М. |
Детонация не только вызывает понижение мощности, но и разрушительно действует на мотор. Охлаждение цилиндров производится проточной водой, отдающей теплоту воздуху ( рис. 528), или непосредственно воздухом.
Причины возникновения детонационного процесса
Детонация может возникать как на горячем, так и на холодном двигателе, проявляться на большой нагрузке, при резком ускорении, реже на холостых оборотах, но достаточно часто после выключения зажигания. Взрывное сгорание топлива в цилиндрах происходит по различным причинам, которые сразу все сложно и перечислить, но стоит рассмотреть основные из них, и это:
- некачественное или несоответствующее октановому числу топливо, например, автомобиль заправлен девяносто вторым бензином вместо Аи-95;
- образование нагара, за счет него уменьшается объем камер сгорания, увеличивается степень сжатия, в результате снижается теплопроводность, происходит перегрев;
- неправильно подобранные по калильному числу свечи зажигания, также детонирование происходит, если свечи закоксованы, не дают нормальное искрообразование, в целом требуют замены;
- слишком ранний угол зажигания, из-за чего повышается давление в цилиндрах, соответственно, и температура;
- неправильно отрегулированные клапана (зажаты);
- обедненная топливовоздушная смесь, процесс происходит по причине того, что бедный состав сгорает медленно, и догорание уже происходит не от свечи зажигания, а в хаотичном порядке;
- перегрев мотора на холостом ходу;
- некорректная перепрошивка блока управления ДВС.
Также детонировать мотор может в силу особенностей конструкции (характерные для конкретной модели ДВС неисправности), в результате неграмотно проведенного ремонта. Допустим, во время выполнения ремонтных работ мастер решил отфрезеровать поверхность головки блока, тем самым уменьшив камеры сгорания, в итоге октановое число бензина перестало соответствовать новой, уже увеличенной степени сжатия.
Детонация двигателя при выключении зажигания
Достаточно распространенным явлением во время эксплуатации бензиновых и дизельных ДВС является то, что детонация двигателя проявляется уже после выключения зажигания. Двигатель в этом случае дергается, так как коленвал успевает сделать еще несколько оборотов.
Такая детонация двигателя после выключения зажигания может быть вызвана двумя явлениями:
- дизелинг;
- калильное зажигание;
В первом случае, который характерен для бензиновых агрегатов, имеет место кратковременная или продолжительная работа мотора в результате повышения степени сжатия или использования несоответствующего по детонационной стойкости топлива, что приводит к самостоятельному воспламенению топливно-воздушной смеси. Во втором случае горючее в цилиндрах может самопроизвольно воспламеняться после выключения зажигания от контакта с раскаленными поверхностями или тлеющим слоем нагара в камере сгорания.
Причины, которые часто путают с детонацией двигателя
… о причинах детонации
Двигатели внутреннего сгорания с искровым зажиганием способны работать некоторое время после отключения зажигания.
Причиной воспламенения смеси являются нагретые элементы в камере сгорания или повышенная степень сжатия. Равномерно снизить температуру головки и поршней поможет работа двигателя на холостом ходу на протяжении 1-2 минут после прекращения поездки.
Калильное зажигание
Калильное воспламенение наблюдается при выключении зажигания карбюраторных двигателей. Раскаленные частицы нагара поджигают рабочую смесь, и мотор может работать 5-10 секунд после попытки глушения. Проблема не встречается на технике с двигателями, оснащенными системой распределенного впрыска, поскольку при повороте ключа в замке отключаются форсунки и помпа, подающая горючее из бака.
Дизелинг
Карбюраторные двигатели с искровым зажиганием и высокой степенью сжатия могут продолжить работать за счет самовоспламенения смеси. Проблема встречается при использовании топлива с недостаточным октановым числом. Топливовоздушная масса воспламеняется в результате сжатия, вызванного инерционным движением поршней после прекращения подачи напряжения к свечам. Агрегат нестабильно работает 2-3 секунды на холостых оборотах, а затем останавливается из-за падения температуры стенок цилиндров.
Дизелинг — одна из причин, которую часто путают с детонацией.
Что такое детонация
Детонация – это процесс взрывного воспламенения рабочей смеси в цилиндрах двигателя. В то время как нормальная скорость распространения фронта пламени составляет около 30 м/с, при детонации огонь распространяется в десятки раз быстрее – до 2000 м/с.
Данное явление никогда не идет на пользу мотору, однако детонацию можно разделить на допустимую и недопустимую. В первом случае ее даже не всегда удается заметить. Обычно она возникает на низких оборотах и продолжается недолго. Чаще всего подобное происходит в двигателях небольшого объема с относительно большой мощностью и крутящим моментом (например, 107 л.с. и 135 Нм при объеме 1,4 л). Недопустимая детонация, как правило, возникает в форсированных ДВС при повышенных нагрузках на высоких оборотах. Всего после нескольких секунд работы в таких условиях, мотор может получить критические повреждения.
Существует еще одно явление, которое автовладельцы нередко путают с детонацией – дизелинг. Мотор после выключения зажигания продолжает работать рывками, то с повышением, то с понижением оборотов, звук работы двигателя при этом металлический, схожий со звуком детонации. Это явление иного рода и причины его появления иные: при глушении мотора, бензин в цилиндрах самовоспламеняется из-за высокой степени сжатия, как в дизельном ДВС, отсюда и название. Не следует путать дизелинг с калильным зажиганием – там при глушении рабочая смесь воспламеняется от нагретых электродов свечей и нагара.
Определение детонационной стойкости бензина
Детонационная стойкость бензина выражается в его октановом числе.
Октановое число бензина указывает на то, что данный вид топлива обладает такой же детонационной стойкостью, что и эталонная сравнительная смесь углеводородов — изооктана и нормального гептана. Так как изооктан имеет октановое число 100, а нормальный гептан — октановое число 0, то октановое число 80 означает, что детонационная стойкость бензина равна детонационной стойкости смеси из 80% (объемных частей) изооктана и 20% (объемных частей) нормального гептана. Детонационная стойкость растет с увеличением октанового числа.
Определение октанового числа выполняется на соответствующем испытательном стенде с использованием эталонного двигателя для оценки детонационной стойкости различных видов топлива. Эталонным в данном случае считается одноцилиндровый четырехтактный бензоиновый двигатель с термосифонной системой жидкостного охлаждения, в которой отсутствует помпа, а охлаждающая жидкость испаряется, и пар низкого давления конденсируется в радиаторе, а затем в виде конденсата возвращается в рубашку охлаждения. Степень сжатия двигателя во время испытаний может изменяться в границах между 4 и 18.
Существует два стандартизированных метода испытаний: исследовательский метод и моторный метод. Соответственно, результатами являются исследовательское октановое число бензина (ROZ) и моторное октановое число бензина (MOZ). Различия основных параметров обоих методов указаны в таблице.
Таблица. Различия параметров исследовательского и моторного методов
В моторном методе смесь воздуха и бензина нагревается позади карбюратора, а в исследовательском методе — воздух нагревается перед карбюратором.
Эталонный двигатель запускается и соединяется с большим электрическим генератором, в котором крутящий момент от эталонного двигателя возбуждает электрический ток, создающий тормозной момент. Измерение октанового числа всегда проводится в режиме сильной детонации при сгорании рабочей смеси. При этом коэффициент избытка воздуха регулируется так, чтобы получить детонацию максимальной интенсивности. Индуктивный датчик и электронный усилитель сигналов замеряют уровень детонации и выводят показания на дисплей специального прибора — детонометра. Компрессия двигателя настраивается таким образом, чтобы показания детонометра исследуемого бензина находились в середине шкалы прибора. Затем в систему питания вводятся две сравнительные смеси, чьи октановые числа различаются лишь на две единицы. Одна сравнительная смесь должна вызывать более сильную, а вторая более слабую детонацию, чем бензин. Посредством линейной интерполяции определяется и округляется до десятых долей октановое число бензина.
Один и тот же бензин, испытанный по моторному методу, имеет меньшее октановое число, чем выявленное по исследовательскому методу. Октановое число, определяемое по моторному методу, в современном бензине меньше примерно на 10 единиц, чем октановое число, определяемое по исследовательскому методу. Данная разница обусловлена тем, что соотношение олефинов и ароматических углеводородов в двух методах испытаний отличаются. На сегодняшний день исследовательское октановое число в бензине равно приблизительно 92, а в бензине высшего качества — 95 единиц. Октановое число, определяемое по исследовательскому методу, указывает на то, как ведет себя топливо при ускорении (детонация при разгоне).
Октановое число, определяемое по моторному методу, наоборот, указывает на поведение при большой нагрузке (детонация при высокой частоте вращения коленчатого вала).
Наряду с исследовательским и моторым октановыми числами существует также октановое число, определяемое по дорожному методу (SOZ). Оно определяется методом дорожных испытания транспортного средства согласно «модифицированному дорожному методу». В прогретый двигатель подаются различные сравнительные смеси из изооктана и нормального гептана. Автомобиль сначала ускоряется до максимальной скорости на прямой передаче, позволяющей плавное движение без рывков. Угол опережения зажигания регулируется до тех пор, пока не исчезнет детонация. В результате данные испытаний образуют базовую кривую, отображенную на рисунке.
Затем по тому же методу определяется установка зажигания, при которой начинается детонация, для исследуемого бензина. По базовой кривой определяется октановое число бензина по дорожному методу. Эта величина в различных двигателях будет иметь различные значения для одного и того же бензина.
А может ли при глушении двигатель автомашины детонировать: разбираемся в аспектах
Причислять неравномерную работу двигателя или любой другой стук к проявлению детонации ошибочно. Чтобы не ошибаться, лучшим вариантом будет узнать, как звучит детонационный режим на практике. Например, посмотреть тематические видеофайлы.
Дизелинг
Как уже отмечалось, нежелательное явление может появиться исключительно на функционирующем моторе. Как же тогда квалифицировать работу силовой установки при выключенном зажигании? Ответ механиков краток – дизелинг. Природа его иная: самовоспламенение бензина, идентичное рабочему процессу дизельного двигателя.
Наверставшие базу знаний по бензиновому ДВС новички сразу же возразят, приведя пару аргументов «против»: высокооктановое топливо обладает плохой способностью к самостоятельному воспламенению, да и степень сжатия в бензомоторе меньше. Все это верно, но при остановке агрегата создаются благоприятные условия для дизелинга.
Исправный двигатель может якобы детонировать при глушении при двух условиях:
- Подача топлива в цилиндры.
- Низкие обороты коленвала.
На деле процесс выглядит таким образом. Заглушили силовую установку, частота вращения коленчатого вала падает, топливо подается. Время, отведенное на воспламенение смеси, увеличивается.
При таких условиях искры от свечи для поджигания топлива не нужно – достаточно постепенного увеличения давления и температуры. Отработав рабочий такт, обороты коленвала увеличиваются, самовоспламенение не происходит. Далее частота снова падает и дизелинг возникает вновь. И так несколько циклов «дерганья».
Вред или польза
В отличие от стука при качании рулем, ничего опасного в том, что двигатель неустойчиво работает после обесточивания, нет. Наоборот, наличие данного эффекта косвенно подтверждает хорошую герметичность камеры сгорания, что свидетельствует об общей исправности ДВС. Данное явление может происходить только на карбюраторных моторах, потому как на инжекторных силовых установках подача топлива прекращается с выключением зажигания.
Отсюда вывод – отсутствие подергивания после остановки агрегата вовсе не является признаком плохого состояния. К слову, правильно настроенный и ухоженный карбюратор защищает двигатель от появления дизелинга. Реализовано это с помощью электромагнитного клапана системы ЭПХХ, который в исправном состоянии перекрывает подачу горючки в цилиндры при выключении ДВС.
А не калильное ли это зажигание?
Бывалые шоферы часто заменяют понятие дизелинг на калильное зажигание (КЗ), что в корне считается неверным. Элементарные различия раскрывает определение КЗ – это воспламенение топливно-воздушной смеси от нагретого источника, которым может быть:
- Перегретая поверхность свечи.
- Выпускной клапан.
- Нагар.
Как уже определились, двигатель проявляет признаки детонации при глушении от самовоспламенения ТВС при ее сжатии (свечка обесточена). Калильное зажигание подразумевает наличие отклонений именно при работающей свече зажигания: нагретые поверхности или слой нагара воспламеняют смесь раньше, чем необходимо.
Последствия КЗ опасны. Оно может вызвать:
- Оплавление свечей.
- Перегрев поршней.
- Оплавление клапанов.
Примечательно, что «калильные» моторы работают устойчиво во всем диапазоне рабочих оборотов. Устойчивость объясняется тем, что у нагретого источника температура продолжает возрастать и поддерживаться.
Причина детонации двигателя после выключения зажигания
Самопроизвольные вспышки горючей смеси в камерах сгорания
Если в нормальном режиме воздушно-топливная смесь может сгорать и распространять фронт пламени со скоростью от 25 до 30 м/с, то во время детонационного процесса фронт распространяется со скоростью в 10–15 раз быстрее. А это уже больше похоже на разрушительный взрыв. Тем не менее детонацию часто путают с калильным зажиганием.
Причина детонации двигателя после выключения зажигания
Калильное зажигание возникает в следствии перегрева деталей камеры сгорания, в основном кокса и нагара на днище поршня, свечах и самой камере. Процесс происходит следующим образом: мы выключаем зажигание, но коленвал по инерции продолжает перемещать поршень вниз, всасывая топливо-воздушную смесь. Она воспламеняется не от искрообразования свечи, а от температуры перегретых деталей. Таким образом, процесс горения может продолжаться ещё несколько секунд, иногда до 10–12.
Калильное зажигание, или всё-таки детонация?
Калильное зажигание
Причинами калильного зажигания могут быть:
- В карбюраторных двигателях подача топлива должна перекрываться сразу после выключения зажигания при помощи экономайзера принудительного холостого хода. Именно он может быть причиной нештатной подачи бензовоздушной смеси из-за подклинивания штока клапана. Это происходит потому, что шток может износиться или закоксоваться. Как правило, проблема устраняется чисткой клапана экономайзера принудительного холостого хода, его заменой.
- В моторах с инжектором всей системой питания управляет электроника, поэтому причину нужно искать в первую очередь в неисправности датчиков холостого хода, электронном блоке управления двигателем.
- В дизельных двигателях причиной калильного зажигания может быть неисправность форсунок, топливного насоса высокого давления, которые также подают солярку в камеру сгорания. В дизелях это чаще может происходит из-за изменения степени сжатия в следствии значительных отложений нагара и в этом случае, действительно, стоит говорить скорее о детонации, чем о калильном зажигании.
Рекомендуем: Как сделать замер давления в топливной рампе?